">
Информатика Сети ЭВМ и телекоммуникаций
Информация о работе

Тема: Основные этапы жизненного цикла вирусов. Объекты внедрения, режимы функционирования и специальные функции вирусов. Схемы заражения файлов

Описание: Проблемы обеспечения санкционированности использования данных. Нежелательная модификация или уничтожение. Основные этапы жизненного цикла вирусов. Объекты внедрения, режимы функционирования и специальные функции. Схемы заражения файлов. Защита ПК.
Предмет: Информатика.
Дисциплина: Сети ЭВМ и телекоммуникаций.
Тип: Курсовая работа
Дата: 08.08.2012 г.
Язык: Русский
Скачиваний: 3
Поднять уникальность

Похожие работы:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ

ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Брянский филиал

Кафедра экономики и финансов

Специальность 080101.65 – Экономическая безопасность

КУРСОВАЯ РАБОТА

Основные этапы жизненного цикла вирусов. Объекты внедрения, режимы функционирования и специальные функции вирусов. Схемы заражения файлов

по курсу «Информационные системы в экономике»

Брянск 2012

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ2

ВВЕДЕНИЕ3

1 ЗАЩИТА БАЗ ДАННЫХ4

1.1 Защита ПК от несанкционированного доступа 4

1.2 Защита информации в базах данных 6

1.3 Мандатная защита11

2 РЕАЛИЗАЦИЯ ЗАЩИТЫ В НЕКОТОРЫХ СУБД17

2.1 Архитектура защиты ACCESS17

2.2 Организация защиты MS SQL SERVER20

2.3 Безопасность данных в ORACLE 7 28

ЗАКЛЮЧЕНИЕ 29

СПИСОК ИСТОЧНИКОВ И ЛИТЕРАТУРЫ31

ВВЕДЕНИЕ

Актуальность темы. В настоящее время необходимость в надежной защите баз данных понимают все организации и предприятия, так как потеря или временная недоступность к данным, похищение или утрата конфиденциальности могут привести к настоящей катастрофе.

Предмет исследования. Защита базы данных — это обеспечение защищенности базы данных против любых предумышленных и непредумышленных угроз с помощью различных средств. Система называется безопасной, если она, используя соответствующие аппаратные и программные средства, управляет доступом к информации так, что только должным образом авторизованные лица или же действующие от их имени процессы получают право читать, писать, создавать и удалять информацию.

Задачи курсовой работы. Научить выявлять и решать проблемы обеспечения санкционированности использования данных и ответить на вопросы по защите данных от нежелательной модификации или уничтожения, а также от несанкционированного их чтения.

Объект исследования. Безопасность ПК и СУБД.

Цель курсовой работы

Методы исследования. Рассмотрение вопросов по обеспечению безопасности информации в базах данных путём обеспечения защиты ПК от несанкционированного доступа.

1 ЗАЩИТА БАЗ ДАННЫХ

1.1 Защита ПК от несанкционированного доступа

Как показывает практика, несанкционированный доступ (НСД) представляет одну из наиболее серьезных угроз для злоумышленного завладения защищаемой информацией. Как ни покажется странным, но для ПК опасность данной угрозы по сравнению с большими ЭВМ повышается, чему способствуют следующие объективно существующие обстоятельства:

1) подавляющая часть ПК располагается непосредственно в рабочих комнатах специалистов, что создает благоприятные условия для доступа к ним посторонних лиц;

2) многие ПК служат коллективным средством обработки информации, что обезличивает ответственность, в том числе и за защиту информации;

3) современные ПК оснащены несъемными накопителями на ЖМД очень большой емкости, причем информация на них сохраняется даже в обесточенном состоянии;

4) накопители на ГМД производятся в таком массовом количестве, что уже используются для распространения информации так же, как и бумажные носители;

5) первоначально ПК создавались именно как персональное средство автоматизации обработки информации, а потому и не оснащались специально средствами защиты от НСД.

В силу сказанного те пользователи, которые желают сохранить конфиденциальность своей информации, должны особенно позаботиться об оснащении используемой ПК высокоэффективными средствами защиты от НСД.

Основные механизмы защиты ПК от НСД могут быть представлены следующим перечнем:

1) физическая защита ПК и носителей информации;

2) опознавание (аутентификация) пользователей и используемых компонентов обработки информации;

3) разграничение доступа к элементам защищаемой информации;

4) криптографическое закрытие защищаемой информации, хранимой на носителях (архивация данных);

5) криптографическое закрытие защищаемой информации в процессе непосредственной ее обработки;

6) регистрация всех обращений к защищаемой информации. Ниже излагаются общее содержание и способы использования перечисленных механизмов.

1.2 Защита информации в базах данных

В современных СУБД поддерживается один из двух наиболее общих подходов к вопросу обеспечения безопасности данных: избирательный подход и обязательный подход. В обоих подходах единицей данных или «объектом данных», для которых должна быть создана система безопасности, может быть как вся база данных целиком, так и любой объект внутри базы данных.

Эти два подхода отличаются следующими свойствами:

В случае избирательного управления некоторый пользователь обладает различными правами (привилегиями или полномочиями) при работе с данными объектами. Разные пользователи могут обладать разными правами доступа к одному и тому же объекту. Избирательные права характеризуются значительной гибкостью.

В случае избирательного управления, наоборот, каждому объекту данных присваивается некоторый классификационный уровень, а каждый пользователь обладает некоторым уровнем допуска. При таком подходе доступом к определенному объекту данных обладают только пользователи с соответствующим уровнем допуска.

Для реализации избирательного принципа предусмотрены следующие методы. В базу данных вводится новый тип объектов БД — это пользователи. Каждому пользователю в БД присваивается уникальный идентификатор. Для дополнительной защиты каждый пользователь кроме уникального идентификатора снабжается уникальным паролем, причем если идентификаторы пользователей в системе доступны системному администратору, то пароли пользователей хранятся чаще всего в специальном кодированном виде и известны только самим пользователям.

Пользователи могут быть объединены в специальные группы пользователей. Один пользователь может входить в несколько групп. В стандарте вводится понятие группы PUBLIC, для которой должен быть определен минимальный стандартный набор прав. По умолчанию предполагается, что каждый вновь создаваемый пользователь, если специально не указано иное, относится к группе PUBLIC.

Привилегии или полномочия пользователей или групп — это набор действий (операций), которые они могут выполнять над объектами БД.

В последних версиях ряда коммерческих СУБД появилось понятие «роли». Роль — это поименованный набор полномочий. Существует ряд стандартных ролей, которые определены в момент установки сервера баз данных. И имеется возможность создавать новые роли, группируя в них произвольные полномочия. Введение ролей позволяет упростить управление привилегиями пользователей, структурировать этот процесс. Кроме того, введение ролей не связано с конкретными пользователями, поэтому роли могут быть определены и сконфигурированы до того, как определены пользователи системы.

Пользователю может быть назначена одна или несколько ролей.

Объектами БД, которые подлежат защите, являются все объекты, хранимые в БД: таблицы, представления, хранимые процедуры и триггеры. Для каждого типа объектов есть свои действия, поэтому для каждого типа объектов могут быть определены разные права доступа.

На самом элементарном уровне концепции обеспечения безопасности баз данных исключительно просты. Необходимо поддерживать два фундаментальных принципа: проверку полномочий и проверку подлинности (аутентификацию).

Проверка полномочий основана на том, что каждому пользователю или процессу информационной системы соответствует набор действий, которые он может выполнять по отношению к определенным объектам. Проверка подлинности означает достоверное подтверждение того, что пользователь или процесс, пытающийся выполнить санкционированное действие, действительно тот, за кого он себя выдает.

Система назначения полномочий имеет в некотором роде иерархический характер. Самыми высокими правами и полномочиями обладает системный администратор или администратор сервера БД. Традиционно только этот тип пользователей может создавать других пользователей и наделять их определенными полномочиями.

СУБД в своих системных каталогах хранит как описание самих пользователей, так и описание их привилегий по отношению ко всем объектам.

Далее схема предоставления полномочий строится по следующему принципу. Каждый объект в БД имеет владельца — пользователя, который создал данный объект. Владелец объекта обладает всеми правами-полномочиями на данный объект, в том числе он имеет право предоставлять другим пользователям полномочия по работе с данным объектом или забирать у пользователей ранее предоставленные полномочия.

В ряде СУБД вводится следующий уровень иерархии пользователей — это администратор БД. В этих СУБД один сервер может управлять множеством СУБД (например, MS SQL Server, Sybase). В СУБД Oracle применяется однобазовая архитектура, поэтому там вводится понятие подсхемы — части общей схемы БД и вводится пользователь, имеющий доступ к подсхеме. В стандарте SQL не определена команда создания пользователя, но практически во всех коммерческих СУБД создать пользователя можно не только в интерактивном режиме, но и программно с использованием специальных хранимых процедур. Однако для выполнения этой операции пользователь должен иметь право на запуск соответствующей системной процедуры.

Кроме непосредственного назначения прав по работе с таблицами эффективным методом защиты данных может быть создание представлений, которые будут содержать только необходимые столбцы для работы конкретного пользователя и предоставление прав на работу с данным представлением пользователю.

В некоторых СУБД пользователь может получить права создавать БД. Например, в MS SQL Server системный администратор может предоставить пользователю main_user право на создание своей БД на данном сервере. По принципу иерархии пользователь main_user, создав свою БД, теперь может предоставить права на создание или изменение любых объектов в этой БД другим пользователям. В СУБД, которые поддерживают однобазовую архитектуру, такие разрешения недопустимы. Например, в СУБД Oracle на сервере создается только одна БД, но пользователи могут работать на уровне подсхемы (части таблиц БД и связанных с ними объектов). Поэтому там вводится понятие системных привилегий. Их очень много, 80 различных привилегий.

Для того чтобы разрешить пользователю создавать объекты внутри этой БД, используется понятие системной привилегии, которая может быть назначена одному или нескольким пользователям. Они выдаются только на действия и конкретный тип объекта. Поэтому- если вы, как системный администратор, предоставили пользователю право создания таблиц (CREATE TABLE), то для того чтобы он мог создать триггер для таблицы, ему необходимо предоставить еще одну системную привилегию CREATE TRIGGER. Система защиты в Oracle считается одной из самых мощных, но это имеет и обратную сторону — она весьма сложная. Поэтому задача администрирования в Oracle требует хорошего знания как семантики принципов поддержки прав доступа, так и физической реализации этих возможностей.

Конфиденциальная информация (sensitive information) - информация, которая требует защиты.

Доступ к информации (access to information) - ознакомление с информацией, ее обработка (в частности, копирование), модификация, уничтожение.

Субъект доступа (access subject) - лицо или процесс, действия которого регламентируются правилами разграничения доступа.

Объект доступа (access object) - единица информации автоматизированной системы, доступ к которой регламентируется правилами разграничения доступа. Объектами доступа (контроля) в СУБД является практически все, что содержит конечную информацию: таблицы (базовые или виртуальные), представления, а также более мелкие элементы данных: столбцы и строки таблиц и даже поля строк (значения). Таблицы базы данных и представления имеют владельца или создателя. Их объединяет еще и то, что все они для конечного пользователя представляются как таблицы, то есть как нечто именованное, содержащее информацию в виде множества строк (записей) одинаковой структуры. Строки таблиц разбиты на поля именованными столбцами.

Правила разграничения доступа (security policy) - совокупность правил, регламентирующих права субъектов доступа к объектам доступа.

Санкционированный доступ (authorized access to information) - доступ к информации, который не нарушает правил разграничения доступа.

Несанкционированный доступ (unauthorized access to information) - доступ к информации, который нарушает правила разграничения доступа с использованием штатных средств, предоставляемых средствами вычислительной техники или автоматизированными системами.

Идентификатор доступа (access identifier) - уникальный признак объекта или субъекта доступа.

Идентификация (identification) - присвоение объектам и субъектам доступа идентификатора и (или) сравнение предъявляемого идентификатора с перечнем присвоенных идентификаторов.

Пароль (password) - идентификатор субъекта, который является его секретом.

Аутентификация (authentification) - проверка принадлежности субъекту доступа предъявленного им идентификатора, подтверждение подлинности.

1.3 Мандатная защита

Средства мандатной защиты предоставляются специальными (trusted) версиями СУБД.

Мандатное управление доступом (mandatory access control) — это разграничение доступа субъектов к объектам данных, основанное на характеризуемой меткой конфиденциальности информации, которая содержится в объектах, и на официальном разрешении (допуске) субъектов обращаться к информации такого уровня конфиденциальности.

Для чего же нужна мандатная защита? Средства произвольного управления доступом характерны для уровня безопасности C. Как правило, их, в принципе, вполне достаточно для подавляющего большинства коммерческих приложений. Тем не менее они не решают одной весьма важной задачи — задачи слежения за передачей информации. Средства произвольного управления доступом не могут помешать авторизованному пользователю законным образом получить секретную информацию и затем сделать ее доступной для других, неавторизованных, пользователей. Нетрудно понять, почему это так. При произвольном управлении доступом привилегии существуют отдельно от данных (в случае реляционных СУБД — отдельно от строк реляционных таблиц), в результате чего данные оказываются «обезличенными» и ничто не мешает передать их кому угодно даже средствами самой СУБД; для этого нужно лишь получить доступ к таблице или представлению.

Физическая защита СУБД главным образом характеризует данные (их принадлежность, важность, представительность и пр.). Это в основном метки безопасности, описывающие группу принадлежности и уровни конфиденциальности и ценности данных объекта (таблицы, столбца, строки или поля). Метки безопасности (физическая защита) неизменны на всем протяжении существования объекта защиты (они уничтожаются только вместе с ним) и территориально (на диске) располагаются вместе с защищаемыми данными, а не в системном каталоге, как это происходит при логической защите.

СУБД не дает проигнорировать метки конфиденциальности при получении доступа к информации. Такие реализации СУБД, как правило, представляют собой комплекс средств как на машине-сервере, так и на машине-клиенте, при этом возможно использование специальной защищенной версии операционной системы. Кроме разграничения доступа к информации посредством меток конфиденциальности, защищенные СУБД предоставляют средства слежения за доступом субъектов к объектам защиты (аудит).

Использование СУБД с возможностями мандатной защиты позволяет разграничить доступ собственно к данным, хранящимся в информационной системе, от доступа к именованным объектам данных. Единицей защиты в этом случае будет являться, в частности, запись о договоре N, а не таблица или представление, содержащее информацию об этом договоре. Пользователь, который будет пытаться получить доступ к договору, уже никак не сможет обойти метку конфиденциальности. Существуют реализации, позволяющие разграничивать доступ вплоть до конкретного значения конкретного атрибута в конкретной строке конкретной таблицы. Дело не ограничивается одним значением метки конфиденциальности — обычно сама метка представляет собой набор значений, отражающих, например, уровень защищенности устройства, на котором хранится таблица, уровень защищенности самой таблицы, уровень защищенности атрибута и уровень защищенности конкретного кортежа.

За исключением атрибута собственности (логическая защита), разбивающего данные (таблицы) на собственные (принадлежащие данному субъекту) и чужие, физическая защита разбивает данные более тонко. Но можно ли обойтись без физической защиты или, по крайней мере, попытаться, реализовав, например, сложный набор хранимых процедур. В общем-то некоторое подобие такой защиты реализуемо в случае, когда метки добавляются в таблицу в качестве дополнительного атрибута, доступ к таблицам запрещается вообще и ни одно приложение не может выполнить интерактивный SQL-запрос, а только хранимую процедуру и т.п. Ряд реализаций подобного уровня защиты использует вызов набора хранимых процедур с весьма абстрактными (что очень желательно) именами. Система реализации защиты информации в данном случае достаточно сложна и предполагает определенный уровень доверия к администратору безопасности, так как он имеет право изменять структуру базы данных, а значит, и хранимые процедуры, представления. Физически же администратор безопасности в данном случае не изолирован от управления секретными данными.

Кроме того, защищенные СУБД позволяют разграничить доступ к информационной системе с тех или иных рабочих станций для тех или иных зарегистрированных пользователей, определить режимы работы, наложить ограничения по времени работы тех или иных пользователей с тех или иных рабочих станций. В случае реализации данных опций на прикладном уровне задача, как правило, сводится к созданию сервера приложений, который занимается отслеживанием, «кто и откуда пришел». Отдельный комплекс серверных приложений (обычно — хранимых процедур, если в СУБД отсутствует мандатная защита) обеспечивает аудит.

Рассмотрим мандатную защиту подробнее. В качестве примера возьмем мандатную защиту СУБД «Линтер», которая получила признание в весьма специфическом секторе — силовых структурах, как единственная СУБД, имеющая сертификат по второму классу защиты от несанкционированного доступа, что соответствует классу B3 по американскому национальному стандарту.

Во-первых, все перечисленные объекты (независимо от их иерархии в базе данных) разбиваются здесь на группы принадлежности. Объект может принадлежать только одной из групп (это может быть, например, разбиение по отделам организации). Группы принадлежности напрямую связаны с группами субъектов (см. ниже). Субъект вправе видеть только данные своей группы, если между группами субъектов не установлены отношения доверия.

Во-вторых, все объекты выстроены в иерархию по уровням конфиденциальности и по уровням ценности или важности. Уровень конфиденциальности разбивает объекты по доступности на чтение (и даже на просмотр). Пользователь с более низким уровнем доступа не будет знать даже о существовании объектов с более высоким уровнем конфиденциальности. Уровень ценности, напротив, разбивает данные (объекты) по важности, ограничивая возможность их удаления и модификации.

В уже упоминавшихся «Критериях оценки надежных компьютерных систем» применительно к системам уровня безопасности B описан механизм меток безопасности, реализованный в рассматриваемых данной статьей СУБД.

Метка объекта включает следующее:

Группа субъекта, который внес данный объект.

Уровень доступа на чтение — RAL (Read Access Level).

Уровень доступа на запись — WAL (Write Access Level).

Метка субъекта выглядит аналогично:

Группа, к которой принадлежит субъект.

RAL-уровень субъекта, который представляет собой максимальный RAL-уровень доступной субъекту информации.

WAL-уровень субъекта, то есть минимальный RAL-уровень объекта, который может быть создан этим субъектом.

Все пользователи базы данных считаются разбитыми на непересекающиеся группы. Группа описывает область доступных пользователю данных. Для каждой группы существует администратор группы (уровень DBA для группы), созданный администратором системы. При этом пользователи одной группы не видят данных, принадлежащих пользователям другой группы. В этом плане у СУБД «Линтер» имеется особенность: в системе реализовано такое понятие, как «уровень доверия между группами». При этом уровни доверия не могут быть вложенными. Группа представляет собой числовое значение в диапазоне [1-250]. Группа 0 — группа администратора системы. Только администратор системы может создать пользователя в группе, отличной от своей. Все данные, созданные от имени пользователя, помечаются его группой.

Уровни доступа вводятся для проверки прав на осуществление чтения-записи информации. Вводятся следующие уровни доступа:

Для пользователя (субъекта):

RAL — уровень доступа; пользователь может получать (читать) информацию, RAL-уровень которой не выше его собственного уровня доступа;

WAL — уровень доверия на понижение уровня конфиденциальности; пользователь не может вносить информацию с уровнем доступа (RAL-уровнем) более низким, чем данный WAL-уровень пользователя. Иными словами, пользователь не может сделать доступную ему информацию менее конфиденциальной, чем указано в данном параметре.

Для информации:

RAL — уровень чтения; пользователь может получать (читать) информацию, RAL-уровень которой не выше его собственного RAL-уровня (может читать менее конфиденциальные данные);

WAL — уровень ценности или уровень доступа на запись (модификацию, удаление); пользователь может модифицировать (удалять) информацию, WAL-уровень которой не выше его RAL-уровня.

Создать пользователя с произвольными уровнями может только администратор системы. Остальные администраторы (DBA) могут создавать пользователей (или изменять уровень пользователям) лишь в пределах отведенных им уровней. Пользователь может принудительно пометить вводимые данные, указав в списке атрибутов уровни доступа для соответствующих записей и полей (при выполнении операторов INSERT или UPDATE). По умолчанию вносимые данные наследуют уровни пользователя, вносящего/изменяющего данные. Защищаемые объекты: пользователи, таблицы, столбцы, записи (вносится при выполнении INSERT), поля записей (изменяются при выполнении UPDATE). Уровни, как и группы, нельзя использовать в случае, если они не созданы специальными запросами.

Конфигурация, к которой имеет доступ хотя бы один программист, не может считаться безопасной. Поэтому обеспечение информационной безопасности баз данных — дело весьма сложное, и во многом вследствие самой природы реляционных СУБД.

Помимо систематического применения арсенала средств, описанных выше, необходимо использовать административные и процедурные меры, в частности регулярное изменение паролей пользователей, предотвращение доступа к физическим носителям информации и т.п.

1Стандарт Правительства США «Trusted Computer System Evaluation Criteria, DOD standard 5200.28 - STD, December, 1985», описывающий защищенные архитектуры информационных систем и определяющий уровни защиты от A1 (наивысшего) до D (минимального).

2 РЕАЛИЗАЦИЯ ЗАЩИТЫ В НЕКОТОРЫХ СУБД

2.1 архитектура защиты ACCESS

Если у вас имеется опыт работы с защитой, используемой на сервере или большой ЭВМ, структура защиты в Access покажется вам знакомой. Вы можете указать пользователей, которым предоставляется или, наоборот, не разрешается доступ к объектам базы данных. Кроме того, вы можете определить группы пользователей и назначить разрешения на уровне группы, чтобы облегчить построение защиты для большого числа пользователей. Пользователю достаточно быть членом группы, чтобы получить права доступа, установленные для неё.

Access хранит информацию о защите в двух местах. Во время установки программа Setup создаст в папке Program FilesMicrosoft Oficeffice стандартный файл рабочей группы (System.mdw), который впоследствии используется по умолчанию при запуске Access. Этот файл содержит информацию обо всех пользователях и группах. При создании базы данных Access сохраняет сведения о правах, предоставляемых конкретным пользователям и группам, в файле базы данных.

Учётные записи пользователей и групп хранятся в файле рабочей группы. Разрешение на доступ к конкретным объектам сохраняются в файле базы данных.

Расположение текущего файла рабочей группы хранится в реестре Windows. Можно использовать служебную программу Wrkadm.exe (администратор рабочих групп) для изменения текущего или определения нового файла рабочей группы. Кроме того, можно выбирать нужный файл рабочей группы во время выполнения приложения, задав соответствующий параметр командной строки в ярлыке запуска. Если вам приходится часто запускать в сети совместно используемое защищенное приложение, нужно позаботиться о том, чтобы системный администратор задал вашу рабочую группу, используемую по умолчанию, как общий файл в сетевой папке.

Каждая рабочая группа имеет уникальный внутренний идентификатор, генерируемый Access при определении файла рабочих групп. Любая база данных, созданная пользователем рабочей группы, «принадлежит» как этому пользователю, так и рабочей группе. Каждый пользователь и группа также имеет уникальный внутренний идентификатор, но можно дублировать один и тот же код пользователя и группы в нескольких рабочих группах. Когда вы назначаете право доступа к объекту своей базы данных, Access сохраняет в ней внутренний идентификатор пользователя или группы вместе с информацией о доступе. Таким образом, предоставленные вами права перемещаются вместе с файлом базы данных при копировании его в другую папку или на другой компьютер.

При установке Access всегда создается стандартная рабочая группа, содержащая один встроенный код пользователя и два встроенных кода групп. Код пользователя называется Admin, и для него не определен пароль. Access автоматически загружает вас с этим кодом и предоставляет вам все права к привилегии этого пользователя. При создании базы данных или нового объекта в базе данных ваш текущий код пользователя становится владельцем объекта и по умолчанию получает полные права на доступ к этому объекту. Поскольку большинство пользователей Microsoft Access никогда «не включают» защиту и загружаются как пользователи Admin, владельцем всего, что они создают, является универсальный код Admin.

Первой встроенной группой является группа Users. Все пользователи, в том числе и новые, становятся ее членами и не могут быть удалены из нее, Кроме того, внутренний идентификатор группы Users всегда один и тот же во всех устанавливаемых в мире копиях Access. Группе Users автоматически предоставляются полные права доступа к любому новому объекту или базе данных, которые вы создаете. Это означает, что даже если пользователь зарегистрировался с кодом иным, чем Admin, он все равно имеет полный доступ к вашим базам данных и объектам в них, поскольку пользователь всегда является членом универсальной группы Users!

Вторая встроенная группа называется Admins. Ее внутренний идентификатор уникален для каждого файла рабочей группы и определяется на основе информации, которую вы предоставляете программе администратора рабочих групп при создании файла. По умолчанию в эту группу включен только пользователь Admin. Но, как показано ниже, вы можете определить другого пользователя, включить его в группу Admins и удалить пользователя Admin. Эта группа должна содержать, по крайней мере, одного пользователя.

Группа Admins обладает двумя основными привилегиями. Во-первых, члены группы Admins могут определять и изменять учетные записи пользователей и групп, а так же устанавливать и менять пароли. (Вы всегда можете изменить собственный пароль.) Во-вторых, члены группы Admins имеют полный доступ к любым базам данных, созданным при использовании этого файла рабочей группы. Члены этой группы могут первоначально не иметь никаких разрешений на доступ к объектам, но могут назначить себе нужные права. Для понимания этого свойства важно иметь в виду, что любая база данных, созданная при использовании конкретного файла рабочей группы, наследует код этой рабочей группы. Некто может быть членом группы Admins в другом файле рабочей группы, но если коды рабочих групп не совпадают, этот пользователь не получит прав доступа к вашей базе данных.

В таблице 1 приведены разрешения, которые можно назначать базе данных или ее объектам. Обратите внимание, что у владельца объекта может и не быть никаких конкретных разрешений, но, пользуясь своим статусом владельца, он имеет право предоставлять любые или все разрешения любому пользователю или группе, включая себя самого.

Таблица 1

Примеры разрешений Разрешение Объект Разрешённые действия  Открытие/запуск (Open/Run) База данных, форма, отчет, макрос Открытие базы данных, формы или отчета, запуск макроса. (Любой пользователь может выполнять процедуры в модулях.)  Монопольный доступ (Open Exclusive) База данных Открытие базы данных для монопольного доступа. Без этого разрешения пользователь не может открыть базу данных и отключить других пользователей  Чтение макета (Read Design) Таблица, запрос, форма, отчет, макрос, модуль Просмотр объектов в режиме конструктора. Если для таблицы или запроса предоставлен любой тип доступа к данным, автоматически дается разрешение на чтение макета, поскольку оно необходимо для корректного открытия набора записей  Изменение макета (Modify Design) Таблица, запрос, форма, отчет, макрос, модуль Просмотр и изменение макета объектов. Если в приложении используется программа Visual Basic, изменяющая макеты запросов во время выполнения, вы должны предоставить разрешение на изменение макета всем пользователям этих запросов  Администратора (Administer) База данных, таблица, запрос форма, отчет, макрос, модуль Предоставление разрешений на доступ к объекту, даже если пользователь или группа не является владельцем объекта  Чтение данных (Read Data) Таблица, запрос Просмотр данных таблицы. Также дает разрешение на чтение макета. В случае запроса пользователь должен иметь разрешение так же на чтение данных для всех используемых в нем таблиц или запросов  Обновление данных (Update Data) Таблица, запрос Обновление данных таблицы или запроса. Кроме того, предоставляет разрешения на чтение данных и макета. В случае запрос пользователь должен иметь также разрешение на обновление данных для всех таблиц, изменяемых с его помощью.  Вставка данных (Insert Data) Таблица, запрос Вставка данных в таблицу или запрос. Кроме того, предоставляет разрешения на чтение данных и макета. В случае запроса пользователь должен дополнительно иметь разрешение на вставку данных для всех таблиц или запросов, изменяемых с его помощью  Удаление данных (Delete Data) Таблица, запрос Удаление данных из таблицы или запроса. Кроме того, предоставляет разрешения на чтение данных и макета. В случае запрос пользователь должен дополнительно иметь разрешение на удаление данных для всех таблиц, изменяемых с его помощью  

2.2 Организация защиты MS SQL SERVER

В критических для бизнеса приложениях, когда сервер СУБД должен быть постоянно доступен для клиентов, большинство профилактических работ по поддержке базы данных приходится выполнять фактически в режиме on - line. MS SQL Server обладает возможностями динамического резервного копирования данных, т. е. даже когда эти данные используются и изменяются клиентами. В случае сбоя оборудования, отключения питания и т. д. механизм автоматического восстановления MS SQL Server восстанавливает все базы данных до их последнего целостного состояния без вмешательства администратора. Все завершенные, но не отраженные в базе транзакции из журнала транзакций применяются к базе данных (это фактически то, что происходит при событии chekpoint), а незавершенные транзакции, т. е. те, которые были активными на момент сбоя, вычищаются из журнала.

Говоря о симметричной архитектуре, операции резервного копирования и восстановления могут распараллеливаться на несколько потоков и выполняться одновременно, используя преимущества асинхронного ввода/вывода. На каждое резервное устройство отводится свой поток. Параллельное резервное копирование поддерживает до 32 одновременных резервных устройств (backup devices), что позволяет быстро создавать страховочные копии баз данных даже очень большой емкости. Возможность резервного копирования и восстановления отдельных таблиц, о чем мы упоминали, рассматривая Transact-SQL, позволяет экономить место и время, не выполняя копирование всей базы ради только некоторых ее объектов. Однако резервное копирование отдельной таблицы требует наложения на нее блокировки exclusive в отличие от резервного копирования всей базы или журнала транзакций, которые могут выполняться независимо от степени активности пользователей. Резервным копиям может быть назначен предельный срок хранения или дата утраты актуальности, до наступления которой место, занятое на устройстве этими копиями, не может использоваться для размещения других резервных копий при инициализации устройства.

Для небольшой базы данных ее журнал транзакций обычно хранится на том же устройстве, что и сама база, и архивируется вместе с ней. Журналирование транзакций ведется по принципу write-ahead, что означает, что любое изменение сначала отражается в журнале транзакций и лишь потом попадает собственно в базу. В случае нахождения журнала транзакций на отдельном устройстве существует возможность отдельного резервного копирования журнала транзакций. Как правило, резервное копирование базы данных организуется с меньшей частотой, чем журнала транзакций. Например, сохранение журнала транзакций выполняется ежедневно, а страховая копия всей базы может делаться раз в неделю, так как архивирование журнала транзакций происходит значительно быстрее по времени и занимает меньше места, чем дамп целой базы. В отличие от резервирования базы данных дамп журнала транзакций очищает его неактивную часть, т. е. все завершившиеся (зафиксированные или абортированные) с момента последнего дампа транзакции, если только не использована опция NO_TRUNCATE. Команда DUMP TRANSACTION TRUNCATE_ONLY, очищающая журнал транзакций, полезна в случае его переполнения, которое можно контролировать, например, оператором DBCC SQLPERF (LOGSPACE). Если степень переполнения журнала очень высока, можно при его очистке отказаться от журналирования факта самого этого события: DUMP TRANSACTION NO_LOG. Если резервное копирование транзакций не представляет интереса, можно включить опцию очистки последних завершенных транзакций в базе по наступлению события checkpoint. Cмысл механизма checkpoint состоит в периодической записи данных из кэша на диск, чтобы не допускать грязных данных. Такого рода события постоянно генерируются MS SQL Server или возникают по инициативе пользователя. Включенная опция truncate log on checkpoint гарантирует выполнение с определенной частотой обработчиком события действий, приблизительно эквивалентных команде DUMP TRANSACTION TRUNCATE_ONLY.

При восстановлении журнала транзакций соответствующие транзакции применяются к базе данных. Это означает, что если в начале недели была сделана резервная копия всей базы, а потом ежедневно архивировались транзакции за каждый день, то при необходимости восстановления поднимается состояние базы на начало недели и на него последовательно накатываются дампы журнала транзакций за все дни, предшествующие моменту восстановления.

Говоря о преимуществах интеграции с операционной системой, MS SQL Server использует в своей работе сервисы безопасности Windows NT. Напомним, что Windows NT на сегодня сертифицирована по классам безопасности С2/Е3. MS SQL Server может быть настроен на работу в одном из трех режимах безопасности. Интегрированный режим предусматривает использование механизмов аутентификации Windows NT для обеспечения безопасности всех пользовательских соединений. В этом случае к серверу разрешаются только трастовые, или аутентифицирующие, соединения (named pipes и multiprotocol). Администратор имеет возможность отобразить группы пользователей Windows NT на соответствующие значения login id MS SQL Server при помощи утилиты SQL Security Manager. В этом случае при входе на MS SQL Server login name и пароль, переданные через DB-Library или ODBC, игнорируются. Стандартный режим безопасности предполагает, что на MS SQL Server будут заводиться самостоятельные login id и соответствующие им пароли. Смешанный режим использует интегрированную модель при установлении соединений по поименованным каналам или мультипротоколу и стандартную модель во всех остальных случаях.

MS SQL Server обеспечивает многоуровневую проверку привилегий при загрузке на сервер. Сначала идентифицируются права пользователя на установление соединения с выбранным сервером (login name и пароль) и выполнение административных функций: создание устройств и баз данных, назначение прав другим пользователям, изменение параметров настройки сервера и т.д. Максимальными правами обладает системный администратор. На уровне базы данных каждый пользователь, загрузившийся на сервер, может иметь имя пользователя (username) базы и права на доступ к объектам внутри нее. Имеется возможность отобразить нескольких login id на одного пользователя базы данных, а также объединять пользователей в группы для удобства администрирования и назначения сходных привилегий. По отношению к объектам базы данных пользователю могут быть назначены права на выполнение различных операций над ними: чтение, добавление, удаление, изменение, декларативная ссылочная целостность (DRI), выполнение хранимых процедур, а также права на доступ к отдельным полям. Если этого недостаточно, можно прибегнуть к представлениям (views), для которых сказанное остается справедливым. Наконец, можно вообще запретить пользователю непосредственный доступ к данным, оставив за ним лишь права на выполнение хранимых процедур, в которых будет прописан весь сценарий его доступа к базе. Хранимые процедуры могут создаваться с опцией WITH ENCRYPTION, которая шифрует непосредственный текст процедуры, хранящийся обычно в syscomments. Права на выполнение некоторых команд (создание баз, таблиц, умолчаний, правил, представлений, процедур, резервное копирование баз и журналов транзакций) не являются объектно-специфичными, поэтому они назначаются системным администратором сервера или владельцем (создателем) базы данных при редактировании базы данных. Администрирование пользовательских привилегий обычно ведется в SQL Enterprise Manager, тем не менее в Transact-SQL имеются хранимые процедуры (sp_addlogin, sp_password, sp_revokelogin, sp_addalias, sp_adduser) и операторы (GRANT, REVOKE), которые позволяют осуществлять действия по созданию пользователей, назначению и отмене прав при выполнении скриптов. Дополнительную возможность администрирования привилегий предоставляют рассмотренные нами выше SQL-DMO

Система безопасности SQL Server имеет несколько уровней безопасности:

• операционная система;

• SQL Server;

• база данных;

• объект базы данных.

С другой стороны механизм безопасности предполагает существование четырех типов пользователей:

• системный администратор, имеющий неограниченный доступ;

1 2