">
Медицина Фармацевтика
Информация о работе

Тема: Молекулярная фармакология витаминов

Описание: Превращения в организме. Коферментные средства. Поливитаминные препараты. Антивитамины. Биологически активные добавки к пище. Молекулярная фармакология водорастворимых витаминов. Механизм действия. Фармакологическая характеристика. Производные фенилпропионовой кислоты.
Предмет: Медицина.
Дисциплина: Фармацевтика.
Тип: Курсовая работа
Дата: 27.08.2012 г.
Язык: Русский
Скачиваний: 72
Поднять уникальность

Похожие работы:

Молекулярная фармакология витаминов. Классификация. Превращения в организме. Коферментные средства. Поливитаминные препараты. Антивитамины. Понятие о БАД к пище.

ВИТАМИННЫЕ ПРЕПАРАТЫ

Участие витаминов в обмене веществ обусловлено в значительной степени тем, что многие из них являются коферментами или их составной частью.

Большинство витаминов в организме не синтезируется. Источником их обычно являются пищевые продукты. В тканях организма синтезируются лишь витамин D3 (в коже при воздействии ультрафиолетовых лучей) и никотинамид (из трипофанат). Ряд витаминов (витамин К и др.) образуются микроорганизмами в толстой кишке. При определенных условиях может развиваться более или менее выраженная недостаточность витаминов (гиповитаминоз, авитаминоз). Наиболее часто причиной недостаточности является низкое содержание витаминов в пище. Кроме того, некоторые патологические изменения функции пищеварительного тракта могут нарушать всасывание витаминов. В ряде случаев гиповитаминоз возможен при повышенной потребности организма в витаминах (например, при беременности, тиреотоксикозе, лихорадке).

Восполнить недостаточность витаминов можно назначением диеты с соответствующим содержанием овощей, фруктов, продуктов животного происхождения. Это, несомненно, самый удобный и простой путь устранения гиповитаминоза, тем более что в пище содержится комплекс витаминов. Однако дозировка витаминов при этом трудноопределима. Использование пищевых витаминов малоэффективно, если нарушено всасывание витаминов.

Важную роль в лечении гипо- и авитаминоза играют витаминные препараты, выпускаемые фармацевтической промышленностью. Они удобны во многих отношениях. Прежде всего их получение не зависит от времени года. Витаминные препараты можно точно дозировать. Они могут быть использованы и парентерально, если энтеральное введение не дает необходимого эффекта. Следует, однако, учитывать возможность гипервитаминоза — отравления витаминными препаратами (особенно жирорастворимыми).

Препараты витаминов подразделяют на 2 группы (табл. 21.1 и 21.2):

1) препараты водорастворимых витаминов;

2) препараты жирорастворимых витаминов.

КОФЕРМЕНТНЫЕ ПРЕПАРАТЫ - лекарственные средства, содержащие коферменты. Большинство коферментов - продукты превращения витаминов в организме. Роль нек-рых коферментов могут играть также вещества невитаминного происхождения. В соответствии с этим различают К. п. витаминного (кокарбоксилаза, пиридоксальфосфат, кобамамид и др.) и невитаминного (рибоксин, фосфаден, липамид и др.)происхождения.
Коферментные препараты получают как из природных источников лекарственного сырья, так и синтетическим путем. Синтетические К. п. по хим. строению и биол, активности полностью соответствуют коферментам, образующимся в организме или поступающим в него с пищей.
Коферментные препараты имеют следующие особенности действия. Прежде всего они обладают широким спектром биол, активности и относительно низкой токсичностью. Действие К. п. направлено гл. обр. на устранение биохим, нарушений, возникающих при различных заболеваниях и отдельных формах витаминной недостаточности. В отличие от витаминных препаратов К. п. оказывают леч. эффект даже при тех формах витаминной недостаточности, к-рые характеризуются генетически обусловленными нарушениями процессов превращения нек-рых витаминов в организме больного в соответствующие коферменты, напр, при отдельных формах анемий, резистентном к витамину D рахите и др.

Поливитами?нные препара?ты — медицинские препараты, содержащие в одном объёме, рассчитанном на единоразовый приём (таблетке, капсуле, водорастворимой таблетке и др.) два и более витамина. Многие препараты содержат некоторые неорганические вещества (микроэлементы, «минералы») и могут называться «витаминно-минеральные комплексы». Состав и количество витаминов и минералов в одной таблетке (дозе) варьируется в зависимости от назначения препарата. Представители: аевит, алфавит, витрум, гексавит, дуовит, джунгли, кальций Д3 никомед, компливит, мультитабс, центрум, пиковит, ревит, триовит. Таблетки Компливит, покрытые оболочкой 1 таб. ?-токоферола ацетат (вит. E) 10 мг аскорбиновая кислота (вит. С) 50 мг железо (в форме железа (II) сульфата гептагидрата) 5 мг кальция пантотенат (вит. B5) 5 мг кальций (в форме фосфата дигидрата) 50.5 мг кобальт (в форме кобальта (II) сульфата гептагидрата) 100 мкг фосфор (в форме кальция и магния фосфата) 60 мг марганец (в форме сульфата моногидрата) 2.5 мг медь (в форме сульфата пентагидрата) 750 мкг никотинамид (вит. PP) 7.5 мг пиридоксин (в форме гидрохлорида) (вит. В6) 5 мг ретинол (в форме ацетата) (вит. А) 1.135 мг (3300 МЕ) рибофлавин (в форме мононуклеотида) (вит. В2) 1.27 мг рутозид (рутин) (вит. Р) 25 мг тиамин (в форме гидрохлорида) (вит. В1) 1 мг тиоктовая (?-липоевая) кислота 2 мг фолиевая кислота (вит. Bc) 100 мкг цианокобаламин (вит. B12) 12.5 мкг цинк (в форме цинка (II) сульфата гептагидрата). В настоящее время антивитамины принято делить на две группы: 1) антивитамины, имеющие структуру, сходную со структурой нативного витамина, и оказывающие действие, основанное на конкурентных взаимоотношениях с ним; 2) антивитамины, вызывающие модификацию химической структуры витаминов или затрудняющие их всасывание, транспорт, что сопровождается снижением или потерей биологического эффекта витаминов. Таким образом, термином «антивитамины» обозначают любые вещества, вызывающие независимо от механизма их действия снижение или полную потерю биологической активности витаминов.

Структуроподобные антивитамины (о некоторых из них уже упоминалось ранее) по существу представляют собой антиметаболиты и при взаимодействии с апоферментом образуют неактивный ферментный комплекс, выключая энзиматическую реакцию со всеми вытекающими отсюда последствиями.

Помимо структуроподобных аналогов витаминов, введение которых обусловливает развитие истинных авитаминозов, различают антивитамины биологического происхождения, в том числе ферменты и белки, вызывающие расщепление или связывание молекул витаминов, лишая их физиологического действия. К ним относятся, например, тиаминазы I и II, вызывающие распад молекулы витамина В1, аскорбатоксидаза, катализирующая разрушение витамина С, белок авидин, связывающий биотин в биологически неактивный комплекс. Большинство этих антивитаминов применяют как лечебные средства со строго направленным действием на некоторые биохимические и физиологические процессы. В частности, из антивитаминов жирорастворимых витаминов используются дикумарол, варфарин и тромексан (антагонисты витамина К) в качестве антисвертывающих препаратов. Хорошо изученными антивитаминами тиамина являются окситиамин, пири- и неопиритиамин, рибофлавина – атербин, акрихин, галактофлавин, изорибофлавин (все они конкурируют с витамином В2 при биосинтезе коферментов ФАД и ФМН), пиридоксина – дезоксипиридоксин, циклосерин, изоникотиноилгидразид (изониазид), оказывающий антибактериальное действие на микобактерии туберкулеза. Антивитаминами фолиевой кислоты являются амино- и аметоптерины, витамина В12 – производные 2-аминометилпропанол-В12, никотиновой кислоты – изониазид и 3-ацетилпиридин, парааминобензойной кислоты – сульфаниламидные препараты; все они нашли широкое применение в качестве противоопухолевых или антибактериальных средств, тормозя синтез белка и нуклеиновых кислот в клетках.

Биологически активные добавки к пище – это не лекарства, это композиции природных или идентичные природным биологически активные вещества, получаемые из растительного, животного или минерального сырья, а также гораздо реже путем химического или биологического синтеза. Они могут включаться в состав пищевых продуктов или напитков, обогащая их незаменимыми (эссенциальными) пищевыми веществами и некоторыми регуляторами физиологических функций отдельных органов и систем организма человека, либо использоваться самостоятельно в различных технологических формах.

Молекулярная фармакология водорастворимых витаминов. Классификация. Механизм действия. Фармакологическая характеристика.

Тиамин (витамин В,) в больших количествах содержится в отрубях семян хлебных злаков, рисе, горохе, дрожжах и других продуктах растительного и животного происхождения.

Тиамин, всасываясь из кишечника, фосфорилирустся и превращается в тиа-минпирофосфат (см. структуры). В этой форме он является коферментом де-карбоксилаз, участвующих в окислительном декарбоксилировании кетокислот (пировиноградной, а-кетоглутаровой), а также транскетолазы, участвующей в

пентозофосфатном пути распада глюкозы. При недостаточности тиамина резко нарушаются углеводный обмен, а затем и другие виды метаболизма. В крови и тканях накапливаются пировиноградная и молочная кислоты.

В^гиповитаминоз приводит к развитию полиневрита, мышечной слабости, нарушению чувствительности. В тяжелых случаях недостаточности этого витамина (при заболевании бсри-бёри) могут возникать парезы и параличи. Нарушаются также функции сердечно-сосудистой системы. Нередко развивается сердечная недостаточность, которая сопровождается тахикардией, дилатацией сердца, отеками. Наблюдаются и диспепсические явления.

При парентеральном введении солей тиамина (в мышцу) биодоступность препаратов достаточно высокая. Из кишечника их всасывание лимитировано. Следует учитывать, что при повышенной щелочности среды тиамин разрушается. Определенные количества тиамина депонируются в тканях. Из организма тиамин и продукты его превращения выделяются почками.

Применяют тиамин при его недостаточности, при неврите, невралгиях, парезах, радикулите, при ряде кожных заболеваний, а также при патологических состояниях желудочно-кишечного тракта, сердечно-сосудистой системы.

Для практического применения выпускают тиамина бромид и тиамина хлорид1 (назначают внутрь и парентерально).

Токсические эффекты при применении препаратов тиамина обычно не возникают. Иногда наблюдаются аллергические реакции.

Рибофлавин2 (витамин В2) содержится в больших количествах в печени, почках, яйцах, молочных продуктах, дрожжах, зерновых злаках.

Всасываясь из кишечника, рибофлавин при участии АТФ фосфорилируется и превращается в следующие коферментные формы (см. структуры): ФМН и ФАД. Оба кофермента принимают участие в окислительно-восстановительных процессах в составе дегидрогеназ и оксидаз. Группу ферментов, в состав которых входит рибофлавин, обычно называют флавиновыми ферментами.

При недостаточности рибофлавина развивается ангулярный стоматит (хейлоз) — образуются трещины в углах рта, на губах. Наблюдаются также глоссит (сосочки языка сглажены, цвет языка пурпурный с синеватым оттенком), поражение кожи у носа и около ушных раковин. Типичен васкулярный кератит (расширение сосудов конъюнктивы вокруг роговиц). Возникают светобоязнь, слезотечение. Иногда наблюдается нарушение зрения в темноте (гемералопия). Недостаточность рибофлавина нередко приводит к анемии.

Из желудочно-кишечного тракта рибофлавин всасывается хорошо. В значительных количествах депонируется в тканях. Выделяется почками.

Применяют рибофлавин при его недостаточности, а также при кератите, конъюнктивите, ирите, при ряде кожных и инфекционных заболеваний, лучевой болезни. Назначают внутрь и местно. Парентерально используют рибофлавина мононуклеотид.

Токсические эффекты при применении рибофлавина не отмечаются.

Кислоту никотиновую и никотинамид обозначают как витамин РР3. Имеются данные о том, что в организме кислота никотиновая превращается в амид кислоты никотиновой. Последний участвует в образовании двух важных коферментов (см. структуры): никотинамидадениндипуклеотида НАД (кодегидраза I) и НАДФ (коде-гидраза II). С дегидрогеназами они участвуют в окислительных процессах, являясь на определенном этапе дыхания акцепторами водорода (протонов) и электронов.

Никотинамид частично образуется в организме из триптофана. При отсутствии в пище витамина РР развивается пеллагра1. Основными ее симптомами являются диарея, дерматит (характерно воспаление открытых поверхностей кожи).

Помимо функции витамина, кислота никотиновая обладает также выраженным, но непродолжительным сосудорасширяющим эффектом. Проявляется это покраснением лица, головокружением, снижением артериального давления, тахикардией и др. Никотинамид такими свойствами не обладает. Кислота никотиновая влияет также на липидный обмен, снижая содержание в крови холестерина и свободных жирных кислот (см. главу 22).

Из пищеварительного тракта кислота никотиновая и никотинамид всасываются хорошо. Неизмененные соединения и продукты их превращения выделяются почками.

Применяют кислоту никотиновую и никотинамид внутрь и парентерально при пеллагре, заболеваниях печени, гастрите с пониженной кислотностью, кожных заболеваниях. Кислоту никотиновую иногда назначают при сосудистых спазмах, а также в качестве гиполипидемического средства.

Оба соединения малотоксичны. Кислота никотиновая может вызывать сосудистые реакции, обусловленные расширением сосудов. При ее длительном применении в больших дозах возможно развитие жировой дистрофии печени. Для предупреждения этого осложнения следует пользоваться метионином (аминокислота, способствующая утилизации избытка жира из печени).

Кислота пантотеновая2 (витамин В,) в природе имеет очень широкое распространение. Особенно большие ее количества обнаружены в дрожжах, печени, яйцах, икре рыб, зерновых культурах, цветной капусте. Кислота пантотеновая синтезируется микрофлорой кишечника.

Физиологической активностью обладает правовращающий изомер кислоты пантотеновой. В организме он участвует в образовании кофермента А. Значение последнего в обменных процессах очень велико: он принимает участие в окислении и биосинтезе жирных кислот, в окислительном декарбоксилировании кето-кислот (например, пировиноградной, а-кетоглутаровой), в синтезе лимонной кислоты (включаясь в цикл трикарбоновых кислот), кортикостероидов, ацетилхолина. Основная функция кофермента А заключается в том, что он является акцептором и переносчиком кислотных (ацильных) остатков.

Недостаточности кислоты пантотеновой у людей практически не бывает. Если ее вызвать искусственным путем, назначая добровольцам специальную диету, наблюдаются утомляемость, нарушение сна, головная боль, диспепсические расстройства, парестезии, мышечные боли и другие нарушения.

Из желудочно-кишечного тракта кислота пантотеновая всасывается хорошо. В больших количествах обнаруживается в ряде органов: сердце, печени, почках, надпочечниках. Выделяется в неизмененном виде (2/3 — почками, 1/3 -кишечником).

В медицинской практике применяют кальция пантотенат (внутрь, местно и парентерально). Препарат назначают при неврите, невралгиях, некоторых аллергических реакциях, при заболеваниях органов дыхания, язвах, ожогах, при послеоперационной атонии кишечника, для устранения токсических эффектов препаратов стрептомицина, соединений мышьяка и др.

Токсичность кальция пантотената низкая. Из побочных эффектов иногда наблюдаются диспепсические явления.

Витамином В6 принято обозначать 3 соединения: пиридоксин (пиридоксол), пиридоксаль и пиридоксамин (см. структуры). Для обозначения всей группы обычно используют название первого соединения — пиридоксин.

Вещества с В6-витаминной активностью в больших количествах содержатся в дрожжах, зернах злаков, бобовых культурах, бананах, мясе, рыбе, печени, почках.

Основной коферментной формой, в которую превращаются пиридоксин, пиридоксаль и пиридоксамин, является пиридоксальфосфат (кроме того, образуется пиридоксаминфосфат). Пиридоксальфосфат участвует в очень многих процессах азотистого обмена: трансаминировании, дезаминировании и декарбоксилировании аминокислот, метаболизме триптофана, аминокислот, содержащих серу, ок-сиаминокислот и др.

У взрослых недостаточность витамина В6 наблюдается редко. Она может возникнуть у детей (наблюдаются судороги, дерматит).

Следует иметь в виду, что причиной недостаточности витамина В6 может быть длительное лечение противотуберкулезными препаратами из группы гидразидов изоникотиновой кислоты (изониазид и др.), которые угнетают синтез пиридок-сальфосфата. Если при этом развиваются периферические невриты, их устраняют с помощью пиридоксина.

Искусственно вызываемая у добровольцев недостаточность витамина В6 путем назначения специальной диеты сопровождается возникновением себорейного дерматита на лице, глоссита, стоматита, судорог. После введения пиридоксина эти явления проходят.

Из пищеварительного тракта пиридоксин всасывается хорошо. В организме подвергается химическим превращениям. Его метаболиты выводятся почками.

Для медицинской практики выпускают пиридоксина гидрохлорид. Его применяют при недостаточности витамина В6 на фоне приема гидразидов изоникотиновой кислоты, антибиотиков, при большой физической нагрузке, приток-сикозе беременных. Используют препарат также при лечении паркинсонизма, неврита, радикулита, лучевой болезни, гепатита легкой и средней тяжести, ряда кожных заболеваний. Вводят его внутрь и парентерально. Переносится препарат хорошо. Иногда возникают аллергические реакции.

Наряду с пиридоксином по тем же показаниям используют его коферментную форму пиридоксальфосфат.

Кислота фолиевая1 (кислота птероилглутаминовая) состоит из 3 структурных элементов: птеридинового производного, парааминобензойной кислоты и L-глу-таминовой кислоты2. Наибольшие количества кислоты фолиевой находятся в свежих овошах (салат, шпинат, помидоры, морковь), печени, почках, яйцах, сыре и других продуктах. Синтезируется микрофлорой кишечника.

В печени кислота фолиевая превращается в активную коферментную форму — 5,6,7,8-тетрагидрофолиевую кислоту (см. структуры). Основная функция последней заключается в присоединении и переносе одноуглеродных групп (формиль-ной3, метильной, оксиметильной и метиленовой).

Тетрагидрофолиевая кислота участвует в синтезе пуринов, опосредовано -в синтезе пиримидинов, превращениях ряда аминокислот, обмене гистидина, синтезе метионина, т.е. в метаболизме нуклеиновых кислот и белков.

При недостаточности кислоты фолиевой развивается макроцитарная анемия. Могут быть лейкопения, агранулоцитоз, тромбоцитопения. Поражается пищеварительный тракт (возникают глоссит, стоматит, язвенный гастрит, энтерит).

Кислота фолиевая всасывается из тонкой кишки. В плазме основная ее часть находится в связанном состоянии. В больших количествах она депонируется в печени. В значительных концентрациях обнаруживается вликворе. Продукты превращения кислоты фолиевой выделяются почками.

Применяют кислоту фолиевую при макроцитарной анемии (см. главу 18), мегалобластических анемиях у детей и беременных, при спру и т.д. Вводят препарат внутрь.

Говоря о витамине В|2, обычно имеют в виду цианокобаламин (см. химическую структуру). Однако активностью витамина В]2 обладает и ряд других аналогов и производных цианокобаламина (в том числе природного происхождения). Таким образом, понятие «витамин В|2» приобрело собирательный характер. В особенно больших количествах В|2 содержится в говяжьей печени и почках. В природе синтезируется только микроорганизмами. Этот путь используется и при промышленном получении витамина В|2. Синтез витамина В|2 микроорганизмами в толстой кишке человека для баланса витамина В|2 не имеет значения, так как его всасывание происходит главным образом в тонкой кишке.

Основная функция активных коферментных форм витамина В12 (кофермента В124 и метилкобаламина5) — перенос подвижных метильных групп (процесс трансметилирования) и водорода. Благодаря этим процессам осуществляется влияние на обмен белков и нуклеиновых кислот (посредством участия в синтезе метионина, ацетата, дезоксирибонуклеотидов и др.). Витамин В]2 необходим для процесса кроветворения, образования эпителиальных клеток, функционирования нервной системы (участвует в образовании миелина), роста и процессов регенерации.

При недостаточности цианокобаламина (связанной обычно с патологией желудка и тонкой кишки, нарушающей всасывание цианокобаламина6) развивается мегалобластическая анемия (пернициозная, или злокачественная, анемия; анемия Аддисона—Бирмера). Поражаются также пищеварительный тракт (язык становится ярко-красным, гладким, высокочувствительным к химическим раздражителям, отмечаются атрофия слизистой оболочки желудка, ахилия) и нервная система (парестезии, болевые ощущения, нарушение походки).

Всасывается цианокобаламин («внешний фактор Касла») в тонкой кишке. Это происходит после его взаимодействия в желудке с «внутренним фактором Касла». Последний представляет собой гликопротеин, необходимый для абсорбции цианокобаламина. Если внутренний фактор по каким-либо причинам отсутствует (например, в результате резекции желудка), цианокобаламин следует вводить парентерально. В плазме крови цианокобаламин в основном находится в связанном с белками состоянии. В больших количествах он депонируется в печени. Выделяется преимущественно железами пищеварительного тракта (особенно с желчью), а также почками.

Переносится препарат хорошо. Иногда вызывает повышение свертываемости крови. При превышении обычного числа эритроцитов и лейкоцитов дозу цианокобаламина снижают.

К витаминам группы В ряд авторов относят также кислоту пангамовую и холи-на хлорид. Однако правильнее расценивать их как витаминоподобные вешества или физиологически активные биогенные соединения. При недостаточности этих веществ в пище гипо- или авитаминоз у людей не возникает. Неизвестны кофер-ментные формы кислоты пангамовой и холина хлорида. Их участие в биохимических процессах связано с тем, что они являются донаторами метильных групп. Применяют их при заболеваниях печени (циррозе, гепатитах), атеросклерозе, лечении алкоголизма. Кислоту пангамовую назначают также при дистрофических поражениях миокарда, при стенокардии. В качестве препарата кислота пангамовая выпускается в виде кальциевой соли (кальция пангамат), назначаемой внутрь.

Важную биологическую роль играет кислота аскорбиновая (витамин С). Она содержится в значительных количествах в овощах, фруктах, ягодах, хвое, шиповнике, в листьях и ягодах черной смородины. Под влиянием высоких температур, кислорода, аскорбатоксидазы (фермента, содержащегося в растениях), тяжелых металлов (особенно меди) кислота аскорбиновая разрушается. В организме человека она не синтезируется.

Основные эффекты кислоты аскорбиновой связаны с ее участием в окислительно-восстановительных процессах. Последнее осуществляется в результате окисления кислоты аскорбиновой в дегидроаскорбиновую. Процесс этот обратимый и сопровождается переносом атомов водорода.

Кислота аскорбиновая участвует в образовании основного вешества соединительной ткани (включающего мукополисахариды — гиалуроновую и хондроитин-серную кислоты) и синтезе коллагена, при недостатке которых отмечаются по-розность и ломкость сосудов, замедление процесса регенерации. Установлено участие кислоты аскорбиновой в образовании кортикостероидов, в обмене тирозина, превращении кислоты фолиевой в ее активную форму — тетрагидрофолие-вую кислоту, активации ряда ферментов.

Недостаточность кислоты аскорбиновой приводит к развитию гиповитаминоза, а в тяжелых случаях авитаминоза (цинга, или скорбут). При цинге наблюдаются утомляемость, сухость кожи, геморрагические высыпания на коже (обычно пе-рифолликулярные), гингивит с кровотечением из десен, расшатывание и выпадение зубов, кровоизлияния в мышцы, боли в конечностях, нарушения со стороны внутренних органов (геморрагический энтероколит, плеврит, гипотония, поражения сердца, печени и др.). Снижается сопротивляемость инфекциям, так как, очевидно, страдает иммунитет.

Всасывается кислота аскорбиновая в тонкой кишке. Частично депонируется в тканях (особенно много вещества обнаруживается в надпочечниках). Выделяется с мочой частично в неизмененном виде, но главным образом в виде продуктов превращения (оксалатов).

Применяют кислоту аскорбиновую для профилактики и лечения ее недостаточности, при кровотечениях, инфекциях, интоксикациях химическими веществами, атеросклерозе, лучевой болезни, вялотекущих регенеративных процессах, повышенных нагрузках. Вводят препарат внутрь и парентерально.

В терапевтических дозах кислота аскорбиновая переносится хорошо и побочных эффектов не вызывает. При введении в больших дозах и в течение длительного времени может повреждать островковый аппарат поджелудочной железы и опосредованно (вследствие избыточного образования кортикостероидов) почки. Последнее приводит к повышению артериального давления.

Витамин Р объединяет ряд веществ, относящихся к группе биофлавоноидов1 (химически являются производными флавона). Содержатся они в цитрусах, плодах шиповника, ягодах черноплодной рябины, зеленых листьях чая и др.

Основной эффект витамина Р заключается в уменьшении проницаемости и ломкости капилляров. Наряду с кислотой аскорбиновой он участвует в окислительно-восстановительных процессах.

При недостаточности витамина Р наблюдается снижение резистентности капилляров, которое устраняют назначением препаратов, обладающих Р-витамин-ной активностью. В качестве последних используют рутин (3-рутинозид кверце-тина, получаемый из зеленой массы гречихи), кверцетин, витамин Р из листьев чайного растения (содержит катехины), витамин Р из цитрусовых и других растений.

Применяют препараты с Р-витаминной активностью (целесообразно в сочетании с кислотой аскорбиновой) при патологических состояниях, сопровождающихся повышением проницаемости сосудов (геморрагическом диатезе, капил-ляротоксикозе). Назначают внутрь.

К витаминоподобным веществам, растворимым в воде, может быть отнесен также витамин U. Химически он представляет собой метилметионинсульфония хлорид. В значительных количествах содержится в спарже, свежих томатах, капусте, сельдерее.

Витамин U оказывает противоязвенное действие2. Можно полагать, это связано с тем, что он является донатором метильных групп. Применяют витамин U внутрь при язвенной болезни желудка и двенадцатиперстной кишки, гастрите, язвенных колитах.

Молекулярная фармакология жирорастворимых витаминов. Классификация. Механизм действия. Фармакологическая характеристика.

21.2. ПРЕПАРАТЫ ЖИРОРАСТВОРИМЫХ ВИТАМИНОВ

Эта группа витаминов объединяет витамины A, D, Е, К (см. табл. 21.2). Витамин А включает ряд близких по структуре соединений: ретинол (витамин А-спирт, витамин А,, аксерофтол), дегидроретинол (витамин А2), ретиналь (ретинен, витамин А-альдегид), ретиноевую кислоту (витамин А-кислота) и их эфи-ры и пространственные изомеры. Содержится витамин А (в виде эфира-пальми-тата) в животных продуктах: рыбьем жире (трески, палтуса, морского окуня), печени, коровьем масле и других молочных продуктах.

В различных растениях и частично в животных продуктах содержатся А-про-витамины — каротины1 (а-, Р- и у-изомеры). В организме они превращаются в витамин А. Наиболее распространенным и наиболее активным изомером является р-каротин. Ферментативное расщепление (гидролиз) 1 молекулы р-каротина приводит к образованию 2 молекул витамина А. Значительные количества каротинов содержатся в моркови, петрушке, щавеле, шпинате, облепихе, красноплод-ной рябине, шиповнике, абрикосах.

Основная направленность действия витамина А на обмен веществ не выяснена. По-видимому, он играет важную роль в окислительно-восстановительных процессах (за счет большого количества ненасыщенных связей). Имеются данные о том, что витамин А участвует в синтезе мукополисахаридов, белков, липидов.

Большое значение имеет витамин А для фоторецепции. Об этом свидетельствует то, что при недостаточности витамина А наступает расстройство темновой адаптации, или так называемого сумеречного зрения (подобное состояние обозначают гемералопией, или «куриной слепотой»). Причина последнего заключается в следующем. В сетчатке имеются специальные клетки (палочки), чувствительные к свету слабой интенсивности. Они содержат фоточувствительный пигмент родопсин, состоящий из ретиналя (альдегидная форма витамина А), связанного с белком опсином. Под влиянием света этот комплекс распадается, что вызывает генерацию нервных импульсов. Сначала образуется ряд промежуточных соединений. Заканчивается процесс распада высвобождением ретиналя и опсина. Затем под влиянием фермента дегидрогеназы ретиналь восстанавливается в витамин А. В темноте из витамина А происходит интенсивный ресинтез зрительного

пурпура, что повышает остроту зрения при низкой освещенности. Упрощенно основные этапы превращения зрительного пурпура представлены на схеме 21.1.

Для недостаточности витамина А, помимо развития гемералопии, типично поражение эпителия слизистых оболочек и кожи. При этом происходит превращение разных видов эпителия в многослойный плоский. Усиливаются процессы ороговения. Кожа становится сухой, наблюдаются папулезная сыпь, шелушение. Поражается слизистая оболочка глаз. Секреция слюнных желез уменьшается. Развивается сухость роговицы (ксерофтальмия2), которая при авитаминозе А может привести к ее размягчению и некрозу (кератомаляции1). В тяжелых случаях это может быть причиной полной слепоты. Кроме того, иногда наблюдается поражение верхних дыхательных путей, желудочно-кишечного тракта, мочеполовой системы.

Нарушение кожных и слизистых барьеров при недостаточности витамина А облегчает инфицирование организма, развитие воспалительных процессов. Заживление ран, их грануляция и эпителизация замедляются. Авитаминоз А может приводить к развитию гипохромной анемии.

Повышение резистентности организма к инфекциям, очевидно, связано со стимулирующим влиянием витамина А на иммунитет. Не исключено, что последнее может иметь благоприятное значение в профилактике возникновения опухолевых процессов.

Всасывается витамин А главным образом в тонкой кишке. Для его диспергирования и абсорбции необходимы желчные кислоты. В связи с этим при недостаточности желчеобразования может развиться гиповитаминоз А. В этих случаях необходимо парентеральное введение препаратов витамина А. После всасывания витамин А по лимфатическим путям попадает в печень, где в значительных количествах депонируется в виде ретинола пальмитата2. Выделяющийся в кровь ретинол в плазме связывается с белками, обеспечивающими его транспорт к тканям. В организме витамин А полностью подвергается химическим превращениям. Образующиеся при этом метаболиты и конъюгаты выделяются почками и кишечником. Каротины, вводимые с продуктами питания, превращаются в витамин А в слизистой оболочке кишечника. С этого момента они приобретают биологическую активность.

Применяют препараты витамина А и каротины для лечения и профилактики А-витаминной недостаточности, при некоторых кожных заболеваниях (при нарушении процесса ороговения), ряде патологических состояний роговицы и сетчатки, для лечения ожогов, обморожений, при инфекционных заболеваниях, некоторых патологических состояниях желудочно-кишечного тракта. Назначают препараты витамина А внутрь, внутримышечно и местно. Дозируют в миллиграммах и в международных единицах (ME). 1 мг витамина А составляет 3300 ME (1 ME = 0,3 мкг). В качестве препаратов с А-витаминной активностью выпускают разные лекарственные формы: ретинола ацетат и ретинола пальмитат, концентрат витамина А, препараты рыбьего жира, масло облепиховое (содержит каротин, каротиноиды и другие соединения).

Длительное применение витамина А в больших дозах может приводить к развитию острого или хронического гипервитаминоза1. В острых случаях отмечаются головная боль, сонливость, тошнота, рвота, светобоязнь, судороги. При хроническом гипервитаминозе А появляются кожные поражения (сухость кожи, пигментация), наблюдаются выпадение волос, ломкость ногтей, боли в области костей и суставов, возможны гиперостоз2 (особенно у детей), увеличение печени и селезенки, диспепсические явления, головная боль. Лечение гипервитаминоза заключается в отмене витамина А.

В последние два десятилетия большое внимание привлекли метаболиты ретинола и его синтетические производные. Эту группу веществ называют ретинои-дами. Действуют они на специальные рецепторы, чувствительные к ретиноевой кислоте и расположенные в ядре клетки. Показано, что ретиноиды эффективны при ряде кожных заболеваний — акне (угрях), псориазе, при нарушении процесса кератизации (например, при ихтиозе) и др. Ряд препаратов применяются местно в виде мазей, кремов, лосьонов, гелей, растворов. Одним из них является трети ной н (кислота ретиноевая, весаноид). Его лечебный эффект связан с подавлением секреции сальных желез, нормализацией кератинизации, уменьшением воспаления. Через эпидермис проникает менее 10% препарата, поэтому резорбтивное (токсическое) действие не развивается.

Применяется преимущественно для лечения акне. Учитывая, что в развитии акне принимают участие Propionibacterium acnes, ретиноиды нередко комбинируют с антибиотиками (тетрациклином, эритромицином). Из побочных эффектов при местной аппликации третиноина наблюдаются раздражающее действие (покраснение), сухость кожи и шелушение.

Для системного действия имеется препарат третиноина весаноид.

При тяжелом течении акне назначают ретиноиды для резорбтивного действия, особенно изотретиноин (роаккутан). Он подавляет функцию сальных желез и уменьшает их размер. Препарат хорошо всасывается из желудочно-кишечного тракта. Биодоступность ~ 20%. В значительной степени связывается с белками плазмы крови, t = 10—20 ч. В печени образуются метаболиты и конъюгаты. Изотретиноин и продукты его превращения выделяются печенью и почками. Вводят изотретиноин внутрь. При местном нанесении он неэффективен.

Вызывает целый ряд побочных эффектов: сухость слизистых оболочек (в том числе и глаз) и кожи, зуд, алопецию, миалгию, артралгию и др.

В эксперименте изотретионин и многие другие ретиноиды оказывают тератогенный эффект. Поэтому, рекомендуя использование препарата женщинам в детородном возрасте, необходимо быть уверенным в отсутствии беременности. Кроме того, за 1 мес до начала лечения, в течение всего курса и спустя 2 мес после его завершения следует обеспечить 100% контрацепцию. К синтетическим ароматическим производным ретинола относится этретинат (тигазон). Он хорошо всасывается из пищеварительного тракта. Биодоступность - 50%. По основным свойствам препарат сходен с изотретиноином. Обладает высокой липофильностью. Очень длительно задерживается в организме (до 2—3 лет), t ~ 100 дней. В организме из этретината образуется активный метаболит ацитретин1 (t|/2 ~ 2 дня). Однако он эстерифицируется и вновь превращается в этретинат. Чаще, чем изотретионин, вызывает алопецию, шелушение кожи, нарушение функции печени, гиперлипидемию; наиболее угрожающий побочный эффект — тератогенность.

Интерес к ретиноидам связан не только с их успешным применением в дерматологической практике. Показано, что эта группа соединений перспективна и в качестве лечебных и профилактических средств при различных опухолевых заболеваниях. Это касается рака кожи и ее предраковых состояний, ряда гемобласто-зов, а также некоторых солидных опухолей. Однако противобластомная активность ретиноидов требует более тщательного исследования.

Поиск новых более эффективных и безопасных ретиноидов продолжается.

К группе витамина D относят эргокальциферол (витамин D2) и холекальциферол (витамин D3).

Большие количества витамина D содержатся в жире печени тунца, трески, палтуса. Умеренной D-витаминной активностью обладают коровье молоко и желтки яиц. Витамин D2 и D имеют природные провитамины. Для витамина D2 это эр-гостерин, относящийся к стеринам растительного происхождения, а для витамина D, — 7-дегидрохолестерин, содержащийся в ряде животных тканей, в том числе в коже. При фотоизомеризации провитамины превращаются в соответствующие витамины. В частности, под влиянием ультрафиолетовых лучей в коже из 7-де-гидрохолестерина образуется витамин D .

Витамины группы D являются прогормонами, из которых образуются активные метаболиты, относящиеся к гормонам.

Метаболизм холекальциферола в организме человека включает следующие этапы:

7-Дегидрохолестерин

4- в коже (ультрафиолетовое облучение) Холекальциферол (витамин D3)

4 в печени

Кальиифедиол

(25-гидроксивитамин D,) в почках

Се какал ьцифедиол Кальцитриол

(24,25-дигидроксивитамин D3) (1,25-гидроксивитамин D3)

Наиболее активным метаболитом холекальциферола является кальцитриол (рокальтрол), который по своим свойствам является гормоном. Он взаимодействует со специфическими внутриклеточными рецепторами и регулирует обмен кальция во многих тканях. Кальцифедиол — основной циркулирующий метаболит холекальциферола.

Синтетическим аналогом холекальциферола является альфакальцидол. В печени он превращается в кальцитриол.

Синтетический аналог кальцитриола — препарат кальципотриол (псоркутан).

Эргокальциферол, образующийся в растениях из эргостерола, попадая в организм, проходит аналогичные этапы метаболизма, отмеченные для холекальциферола.

Влияние веществ группы витамина D на обмен веществ однотипно и проявляется в основном в отношении метаболизма кальция (Са2+) и фосфата (НР042). Один из важных эффектов витамина D (имеются в виду все активные соединения этой группы) заключается в том, что он повышает проницаемость эпителия кишечника для кальция и фосфатов. При этом обеспечиваются необходимые их концентрации в крови. Кроме того, витамин D регулирует минерализацию костной ткани. При его недостаточности развиваются рахит, остеомаляция и остеопороз. Вместе с тем под контролем витамина D находится и процесс мобилизации кальция из костной ткани, что также необходимо для создания оптимальных условий ее роста.

Определенное значение в поддержании необходимых концентраций фосфатов в организме имеет способность витамина D повышать их реабсорбцию в канальцах почек. Обмен кальция и фосфатов регулируется не только витамином D, но также паратгормоном и тирокальцитонином (см. главу 20; 20.2, рис. 20.4).

Показано, что, помимо влияния на обмен кальция, холекальциферол и его метаболиты тормозят пролиферацию кератиноцитов кожи и активируют их диф-ференцировку.

Недостаточность витамина D у детей приводит к развитию рахита (нарушается обызвествление костей, могут деформироваться позвоночник и грудная клетка, часто искривляются нижние конечности, задерживается появление зубов, возникает гипотония мышц, отстает общее развитие ребенка). У взрослых при гиповитаминозе могут развиться остеомаляция и остеопороз.

Всасывается витамин D в тонкой кишке. С лимфой попадает в печень и общий кровоток. В плазме крови связывается с а-глобулином, который осуществляет его транспорт к различным органам. Депонируется витамин D в костях, жировой ткани, печени, в слизистой оболочке тонкой кишки и в других тканях. Выделяются витамин D и продукты его обмена в основном кишечником, в меньшей степени почками.

Следует иметь в виду, что при передозировке витамин D может вызывать острое и хроническое отравления (D-гипервитаминозы). Заключаются они в патологической деминерализации костей и отложении кальция в почках, сосудах, сердце, легких, кишечнике. Это сопровождается нарушением функций соответствующих органов и может приводить к смертельному исходу (например, в результате почечной недостаточности и связанной с ней уремии). Заметно страдает и ЦНС. Симптоматика довольно разнообразна — от вялости и сонливости до резкого беспокойства и судорог. Лечение D-гипервитаминоза заключается в отмене витамина D и назначении кортикостероидов, витамина Е, препаратов магния и калия, кислоты аскорбиновой, ретинола, тиамина.

1 2 3