">
Прикладные науки Биология
Информация о работе

Тема: Основные свойства живого

Описание: Качественные особенности живой материи. Основная форма организации живой материи. Клетка как открытая система. Организация потоков вещества, энергии и информации клеток многоклеточного организма. Биологически активные вещества, синтезируемые в клетке.
Предмет: Прикладные науки.
Дисциплина: Биология.
Тип: Билеты к экзамену
Дата: 09.07.2012 г.
Язык: Русский
Скачиваний: 339
Поднять уникальность

Похожие работы:

№ 01 Качественные особенности живой материи. Принципы организации во времени и пространстве. Уровни организации живого.

Качественные особенности живой материи.

По современным представлениям живые земные тела – это открытые саморегулирующиеся системы, способные к самовоспроизведению и построенные из биополимеров. Такие тела обладают способностью к авторегуляции, относительным постоянством химического состава и представляют собой открытые системы, т.е. системы, которые находятся в состоянии динамического равновесия с внешней средой.

К основным свойствам живых организмов следует отнести единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы, но соотношение элементов разное. В живых организмах 98% химического состава приходится на углерод, кислород, азот и водород.

Уровни организации живой материи.

Под уровнем организации живой материи понимают то функциональное место, которое данная биологическая структура занимает в общей системе организации мира.

Обычно выделяют следующие уровни организации живой материи: молекулярный, клеточный, организменный, популяционно-видовой, биогенетический и биосферный.

Биосфера – это самая крупная экологическая система Земли. Для этого уровня организации живой материи характерен большой круг биотического обмена веществ. В процессе эволюции в биосфере происходила смена одних групп организмов другими, но соотношения продуцентов, консументов и редуцентов оставалось практически одинаковым.

Существенное влияние на биосферный уровень организации живой материи оказывает антропогенный фактор. В процессе жизнедеятельности человека накапливаются ксенобиотики, т.е. чужеродные для организмов химические вещества, не входящие в естественный биотический круговорот (например, пестициды, минеральные удобрения, препараты бытовой химии, химические лекарственные средства, радиоактивные вещества и т.д.). Попадая в среду обитания живых организмов, ксенобиотики могут вызвать гибель организмов, изменить наследственность, снизить иммунитет, нарушить обмен веществ. Эти влияния в конечном счете сказываются и на биосферном уровне организации живой материи. № 02 Прокариоты и эукариоты. Клеточная теория, история и современное состояние, ее значение для биологии и медицины. Прокариотические и эукариотические клетки.

Прокариоты (лат. про – перед и гр. карион – ядро) – это древнейшие организмы, не имеющие оформленного ядра. Носителем наследственной информации у них является молекула ДНК, которая образует нуклеоид. В цитоплазме прокариотической клетки нет многих органоидов, которые имеются у эукариотической клетки (митохондрий, эндоплазматической сети, аппарата Гольджи и т.д.; функции этих органоидов выполняют ограниченные мембранами полости). В прокариотической клетке имеются рибосомы. Большинство прокариот имеет размер 1–5 мкм. Размножаются они путем деления без выраженного полового процесса. Прокариоты обычно выделяют в надцарство. К ним относят бактерии, сине-зеленые водоросли (цианеи, или цианобактерии), риккетсии, микоплазмы и ряд других организмов.

Эукариоты (гр. эу – хорошо и карион – ядро) – организмы, в клетках которых есть четко оформленные ядра, имеющие собственную оболочку (кариолемму) (рис. 1, 2). Ядерная ДНК у них заключена в хромосомы. В цитоплазме эукариотических клеток имеются различные органоиды, выполняющие специфические функции (митохондрии, эндоплазматическая сеть, аппарат Гольджи, рибосомы и т.д.). Большинство эукариотических клеток имеет размер порядка 25 мкм. Размножаются они митозом или мейозом (образуя половые клетки – гаметы или споры у растений); изредка встречается амитоз – прямое деление, при котором не происходит равномерного распределения генетического материала (например, в клетках эпителия печени). Эукариоты также выделяют в особое надцарство, которое включает царства грибов, растений и животных.

Клеточная теория позволила сформулировать вывод о том, что клетка – это важнейшая составляющая часть всех живых организмов. Клеточная теория позволила придти к выводу о сходстве химического состава всех клеток и еще раз подтвердила единство всего органического мира.

Современная клеточная теория включает следующие положения.

1. Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого.
2. Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
3. Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления материнской клетки.
4. В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции. № 03 Клетка – основная форма организации живой материи. Основные структурные компоненты эукариотической клетки: наружная мембрана, цитоплазма, ядро, органеллы, включения.

Клетка – основная форма организации живой материи.

Все живые организмы состоят из клеток. Клетка – это один из основных структурных, функциональных и воспроизводящих элементов живой материи; это элементарная живая система. Неклеточные организмы – вирусы – могут размножаться только в клетках. Существуют и организмы, вторично утратившие клеточное строение (некоторые водоросли).

Клеточная теория позволила сформулировать вывод о том, что клетка – это важнейшая составляющая часть всех живых организмов. Клетка – их главный компонент в морфологическом отношении; она является основой развития многоклеточного организма, т.к. развитие организма начинается с одной клетки – зиготы; клетка – основа физиологических и биохимических процессов в организме, т.к. на клеточном уровне происходят в конечном счете все физиологические и биохимические процессы.

Цитоплазматическая (или клеточная) мембрана (плазмалемма) – это биологическая мембрана, окружающая протоплазму (цитоплазму) живой клетки. Ее основой является двойной слой липидов (водонерастворимых молекул, имеющих полярные «головки» и длинные неполярные «хвосты», представленные цепями жирных кислот). В мембранах преобладают фосфолипиды, в «головках» которых содержатся остатки фосфорной кислоты. «Хвосты» липидных молекул обращены друг к другу, полярные «головки» смотрят наружу, образуя гидрофильную поверхность.

Цитоплазма (греч. цитос – клетка и плазма – вылепленная) – живое содержимое клетки (за исключением ядра). Состоит из мембран и органоидов (ЭПС, рибосом, митохондрий, пластид, аппарата Гольджи, лизосом, центриолей и др.), пространство между которыми заполнено коллоидным раствором – гиалоплазмой. Снаружи цитоплазма ограничена клеточной мембраной (плазмалеммой), внутри – мембраной ядерной оболочки. У растительных клеток имеется еще и внутренняя пограничная мембрана, образующая вакуоли с клеточным соком.

Клеточные включения – это непостоянные структуры клетки. К ним относятся капли и зерна белков, углеводов, жиров, а также кристаллические включения (органические кристаллы, которые могут образовывать в клетках белки, вирусы, соли щавелевой кислоты и т.д. и неорганические кристаллы, образованные солями кальция). В отличие от органоидов эти включения не имеют мембран или элементов цитоскелета и периодически синтезируются и расходуются.

К клеточным органоидам движения относят реснички и жгутики диаметром около 0,25 мкм, содержащие в середине микротрубочки. Такие органоиды имеются у многих клеток (простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например, в дыхательном эпителии).  № 04 Хромосомы – структурные компоненты ядра. Строение, состав, функции. Понятие о кариотипе.

Хромосомы – структурные единицы ядра.

Хромосомы являются носителями материальных основ наследственности – генов. В основе действия гена в процессе развития организма лежит его способность через посредство РНК определять синтез белков. В молекуле ДНК, входящей в состав хромосом, «записана» информация, определяющая химическую структуру белков.

Хромосомы (греч. хрома – краска и сома – тело; были так названы из-за способности к интенсивному окрашиванию) – это важнейший органоид ядра, образованный ДНК в комплексе с основным белком – гистоном, содержащим большое количество лизина и аргинина; этот комплекс составляет около 90% вещества хромосом. В состав хромосом входят также РНК, кислые белки, липиды, минеральные вещества и фермент ДНК-полимераза, необходимый для репликации (удвоения) ДНК. Хромосомы могут иметь длину, в десятки и сотни раз превышающую диаметр ядра. В интерфазу (период между делениями) хромосомы деспирализованы, видны только в электронный микроскоп и представляют собой длинные тонкие нити хроматина. В этот период идет процесс удвоения (редупликации) хромосом; в конце интерфазы каждая хромосома состоит из двух хроматид. Она имеет первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. Центромера служит местом прикрепления нити веретена деления. У ядрышковых хромосом имеется также вторичная перетяжка, где формируется ядрышко.

Функция хромосом заключается в контроле над всеми процессами жизнедеятельности клетки. Хромосомы являются носителями генетической информации. Наследственная информация передается путем репликации молекулы ДНК. Число, размер и форма хромосом строго специфичны для каждого вида.

В половых клетках и в спорах у растений содержится одинарный (гаплоидный) набор хромосом, в соматических клетках – двойной (диплоидный) набор. Бывают также полиплоидные клетки. Различают гомологичные (парные, соответствующие) и негомологичные хромосомы. Хромосомы, определяющие развитие пола, называют половыми. Хромосомы соматических клеток называют аутосомами.

Кариотип - (от карио ... и греч. typos - отпечаток, форма), типичная для вида совокупность морфологических признаков хромосом (размер, форма, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе кариосистематики. Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток. № 05 Митотический цикл клетки. Характеристика периодов. Митоз, его биологическое значение. Проблемы клеточной пролиферации в медицине.

Митоз (непрямое деление клетки) - это такое деление клеточного ядра, при котором образуется два дочерних ядра, каждое из которых содержит набор хромосом идентичный набору материнского ядра. Митоз входит в состав клеточного цикла, т.е. периода между появлением клетки и её делением. Клеточный цикл состоит из интерфазы, митотического (пролиферативного) цикла и цитокинеза. Во время интерфазы клетка подготавливается к делению: происходит деление митохондрий, сборка рибосом, редупликация ДНК, хроматин диспирализуется и становится виден в световой микроскоп. 

Митотический цикл - это комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. У млекопитающих время митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-5, S-периода интерфазы - 6-10 ч. Биологическое значение митотического цикла состоит в том, что он обеспечивает образование клеток, равноценных по объему и содержанию наследственной информации. В митотическом цикле выделяют репродуктивную (интерфаза) и разделительную (митоз) фазы. 

В начальной отрезок интерфазы (постмитотический, пресинтетический или G1-период) восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка, начавшееся в телофазе. Из цитоплазмы в ядро поступает значительное (90%) количество белка. Масса клетки возрастает за счет интенсивного синтеза белка в цитоплазме. 

В синтетическом (S-период) удваивается количество наследственного материала клетки. Наряду с ДНК, интенсивно образуются РНК и белок, а количество гистонов строго удваивается. Продолжительность синтетического периода в клетках человека составляет 7-12 ч. 

Постсинтетический (предмитотический или G2-период) занимает отрезок времени от окончания синтетического периода до начала митоза. Он характеризуется интенсивным синтезом РНК и белка, завершается увеличение массы цитоплазмы. 

Митоз делят на четыре фазы: профаза, метафаза, анафаза, телофаза. Обязательным для разделительной фазы митоза является построение митотического аппарата, который состоит из системы микротрубочек (ахроматиновое веретено, или веретено деления) и структур, поляризующих митоз, т.е. обозначающих два полюса в клетке, к которым разойдутся дочерние хромосомы. Митотический аппарат обеспечивает направленное перемещение дочерних хромосом в анафазе. 

№ 06 Клетка как открытая система. Организация потоков вещества, энергии и информации клеток многоклеточного организма. Биологически активные вещества, синтезируемые в клетке и их медицинское значение.

Процесс поступления веществ в клетку называется эндоцитозом. Различают пиноцитоз и фагоцитоз.

Фагоцитоз (греч. фаго – пожирать) – поглощение клеткой твердых органических веществ (рис. 5). Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется впячивание мембраны. В результате частица оказывается заключенной в мембранный пузырек внутри клетки. Такой пузырек называют фагосомой. Термин «фагоцитоз» был предложен И.И. Мечниковым в 1882 г. Фагоцитоз свойствен простейшим, кишечнополостным, лейкоцитам, а также клеткам капилляров костного мозга, селезенки, печени, надпочечников.

Второй способ поступления веществ в клетку называют пиноцитозом (греч. пино – пью) – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим.

Еще один способ поступления веществ в клетку – осмос – прохождение воды через избирательно проницаемую мембрану клетки. Вода переходит из менее концентрированного раствора в более концентрированный. Вещества могут также проходить через мембрану путем диффузии – так транспортируются вещества, способные растворяться в липидах (простые и сложные эфиры, жирные кислоты и т.д.). Путем диффузии по градиенту концентрации по специальным каналам мембраны идут некоторые ионы (например, ион калия выходит из клетки).

Кроме того, транспорт веществ через мембрану осуществляет натрий-калиевый насос: он перемещает ионы натрия из клетки и ионы калия в клетку против градиента концентраций с затратой энергии АТФ.

Фагоцитоз, пиноцитоз и натрий-калиевый насос – это примеры активного транспорта, а осмос и диффузия – пассивного транспорта.

АТФ – это аденозинтрифосфат, нуклеотид, относящийся к группе нуклеиновых кислот. Концентрация АТФ в клетке мала (0,04%; в скелетных мышцах 0,5%). Молекула АТФ состоит из аденина, рибозы и трех остатков фосфорной кислоты. АТФ называют универсальным источником энергии, потому что энергетика клетки основана главным образом на процессах, в которых АТФ либо синтезируется, либо расходуется.  № 07 Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность и значение.

Синтез веществ, идущий в клетке, называют биологическим синтезом или сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией (лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО2 и Н2О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называют обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования. № 08 Размножение - основное свойство живого. Бесполое и половое размножение, их формы. Определение, сущность, биологическое значение.

Свойство организмов воспроизводить себе подобных, обеспечивающее непрерывность жизни, называется размножением.

Бесполое размножение характеризуется тем, что новая особь развивается из неполовых, соматических (телесных) клеток. В бесполом размножении участвует только одна исходная особь. В этом случае организм может развиться из одной клетки, а возникшие потомки по своим наследственным признакам идентичны материнскому организму. Бесполое размножение широко распространено среди растений и значительно реже встречается у животных. Многие простейшие размножаются путем обычного митотического деления клетки (путем деления материнской клетки пополам (бактерии, эвглены, амебы, инфузории)).

Другим одноклеточным животным, например малярийному плазмодию (возбудителю малярии), свойственно спорообразование. Оно заключается в том, что клетка распадается на большое число особей, равное количеству ядер, заранее образованных в родительской клетке в результате многократного деления ее ядра. Многоклеточные организмы также способны к спорообразованию: у грибов, водорослей, мхов и папоротникообразных споры и зооспоры образуются в специальных органах — спорангиях и зооспорангиях.

Как у одноклеточных, так и у многоклеточных организмов способом бесполого размножения служит также почкование.

Половым называется размножение, при котором преемственность поколений в увеличение численности особей осуществляется с помощью специализированных половых клеток — гамет: женских — яйцеклеток и мужских — сперматозоидов. Созревшие половые клетки при слиянии образуют зиготу, из которой развивается новый дочерний организм. По достижении половой зрелости новый организм в свою очередь производит гаметы, которые дают начало следующим потомкам. Так осуществляется преемственность поколений. Половое размножение имеет очень большие эволюционные преимущества по сравнению с бесполым. Это обусловлено тем, что генотип потомков возникает путем комбинации генов, принадлежащих обоим родителям. В результате повышаются возможности организмов в приспособлении к условиям окружающей среды. Сущность полового размножения заключается в объединении в наследственном материале потомка генетической информация из двух разных источников — родителей. При партеногенезе, когда развитие нового организма происходит только из яйцеклетки, в ней возникает новая комбинация генов в результате кроссинговера и независимого комбинирования хромосом.

В половых железах развиваются половые клетки — гаметы. Мужские гаметы созревают в мужских половых железах — семенниках; этот процесс называется сперматогенезом. Женские гаметы созревают в яичниках в процессе овогенеза. В процессе образования половых клеток — как сперматозоидов, так и яйцеклеток — выделяют ряд стадий: зону размножения, зону роста и зону созревания; в зоне созревания гаметы окончательно формируются путем мейоза. № 09 Половое размножение у простейших. Конъюгация и копуляция.

В ходе полового процесса особи обмениваются между собой генетической информацией, что приводит к их взаимному обновлению и повышает их выживаемость. В ходе эволюции соединение полового процесса и размножения привело к возникновению полового размножения. При половом размножении новая особь сочетает генетические признаки двух родительских особей.

Конъюгация (от лат. conjugatio — соединение), 1) у водорослей конъюгат — своеобразный половой процесс, при котором происходит слияние содержимого двух внешне сходных вегетативных клеток. 2) У инфузорий — обмен половыми ядрами и последующее их попарное слияние; инфузории при этом сближаются по двое сторонами, на которых находится ротовое отверстие. При слиянии макронуклеус (вегетативное ядро) постепенно разрушается, а микронуклеус (половое ядро) двукратно делится путём мейоза, после чего 3 ядра разрушаются, а 1 делится снова и каждая из его половинок обменивается на половинку ядра партнёра, т. е. происходит их слияние и образуется синкарион, в результате чего восстанавливается двойной набор хромосом. Затем синкарион делится и часть продуктов деления превращается в макронуклеус, а другая часть — в микронуклеусы. Иногда из одной клетки в другую переходит при этом небольшое количество цитоплазмы. В деталях процесс К. у инфузорий сильно варьирует. 3) У бактерий — способ переноса генетического материала от одной бактериальной клетки к другой. При этом две бактерии соединяются тонким мостиком, через который из одной клетки (донора) в другую (реципиент) переходит отрезок нити дезоксирибонуклеиновой кислоты (ДНК). Наследственные свойства реципиента изменяются в соответствии с количеством генетической информации, заключённой в переданном кусочке ДНК. Конъюгация хромосом — попарное временное сближение гомологичных хромосом, во время которого между ними может произойти обмен гомологичными участками. После К. хромосомы расходятся.

Копуляция (от лат. copulatio — соединение),

  1) соединение двух особей при половом акте.

  2) Процесс слияния двух половых клеток (гамет). Под К. обычно понимают слияние внешне почти или совсем не различающихся половых клеток. Если мужская гамета резко отличается от женской, процесс их слияния называется оплодотворением.

 № 10 Половое размножение у многоклеточных. Морфологические особенности половых клеток. Процесс оплодотворения, биологическое значение.

Половым называется размножение, при котором преемственность поколений в увеличение численности особей осуществляется с помощью специализированных половых клеток — гамет: женских — яйцеклеток и мужских — сперматозоидов.

Мужские половые клетки (гаметы) – сперматозоиды – образуются в результате сперматогенеза (гр. сперма – семя и генезис – рождение).
Этот процесс идет в три стадии: размножение в семенниках диплоидных клеток сперматогенной ткани, в результате которого образуются сперматоциты (2n); рост сперматоцитов, сопровождающийся синтезом ДНК и достраиванием второй хроматиды; созревание сперматоцитов, которые делятся мейозом с образованием гаплоидных (n) сперматозоидов.
Хромосомные наборы сперматозоидов (человека и других млекопитающих) различаются по половым хромосомам: одни несут Х-, а другие – Y-хромосому.
Женские половые клетки (гаметы) – яйцеклетки – образуются в результате оогенеза (гр. оон – яйцо и генезис – рождение).
Этот процесс идет в яичниках тоже в три стадии: размножение в яичниках диплоидных клеток оогенной ткани, в результате которого образуются ооциты (2n); рост ооцитов, сопровождающийся синтезом ДНК и построением второй хроматиды хромосом; созревание ооцитов и их деление мейозом. В результате из ооцита образуется одна гаплоидная яйцеклетка с однохроматидными хромосомами (1n1c) и три редукционных (или полярных) тельца. В дальнейшем яйцеклетка участвует в половом процессе, а редукционные тельца отмирают.
Процесс образования мужских и женских гамет называется гаметогенезом

Отличия в строении сперматозоидов и яйцеклеток связаны с их функциями. Яйцеклетки в процессе созревания покрываются оболочками (в некоторых случаях, например, у пресмыкающихся, птиц и млекопитающих, возникает ряд дополнительных оболочек). Функция оболочек – защита яйцеклетки и зародыша от внешних неблагоприятных воздействий.
Функция сперматозоидов заключается в доставке в яйцеклетку генетической информации и стимуляции ее развития. В связи с этим в сперматозоидах происходит значительная перестройка: аппарат Гольджи располагается на переднем конце головки, преобразуясь в кольцевое тельце (акросому), выделяющее ферменты, которые действуют на оболочку яйца. Митохондрии компактно упаковываются вокруг появившегося жгутика, образуя шейку. В сформированном сперматозоиде содержатся также центриоли.

Оплодотворение – это процесс слияния сперматозоида с яйцеклеткой с последующим слиянием их ядер и образованием диплоидной зиготы. Биологическое значение этого процесса состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признаки обоих родительских организмов. При образовании гамет в мейозе возникают клетки с разным сочетанием хромосом, поэтому после оплодотворения новые организмы сочетают в себе признаки отца и матери в различных комбинациях. В результате этого значительно увеличивается наследственное разнообразие организмов № 11 Мейоз, особенности первого и второго деления. Биологическое значение.

Мейоз (греч. мейозис – уменьшение) – способ деления диплоидных клеток с образованием из одной материнской диплоидной клетки четырех дочерних гаплоидных клеток. Мейоз состоит из двух последовательных делений ядра и короткой интерфазы между ними.

Первое деление состоит из профазы I, метафазы I, анафазы I и телофазы I.

В профазе I парные хромосомы, каждая из которых состоит из двух хроматид, подходят друг к другу (этот процесс называется конъюгацией гомологичных хромосом), перекрещиваются (кроссинговер), образуя мостики (хиазмы), затем обмениваются участками. При кроссинговере осуществляется перекомбинация генов. После кроссинговера хромосомы разъединяются.

В метафазе I парные хромосомы располагаются по экватору клетки; к каждой из хромосом прикрепляются нити веретена деления.

В анафазе I к полюсам клетки расходятся двухроматидные хромосомы; при этом число хромосом у каждого полюса становится вдвое меньше, чем в материнской клетке.

Затем наступает телофаза I – образуются две клетки с гаплоидным числом двухроматидных хромосом; поэтому первое деление мейоза называют редукционным.

После телофазы I следует короткая интерфаза (в некоторых случаях телофаза I и интерфаза отсутствуют). В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, т.к. каждая хромосома уже состоит из двух хроматид.

Второе деление мейоза отличается от митоза только тем, что его проходят клетки с гаплоидным набором хромосом; во втором делении иногда отсутствует профаза II.

В метафазе II двухроматидные хромосомы располагаются по экватору; процесс идет сразу в двух дочерних клетках.

В анафазе II к полюсам отходят уже однохроматидные хромосомы.

В телофазе II в четырех дочерних клетках формируются ядра и перегородки (в растительных клетках) или перетяжки (в животных клетках). В результате второго деления мейоза образуются четыре клетки с гаплоидным набором хромосом (1n1c); второе деление называют эквационным (уравнительным) (рис. 18). Это – гаметы у животных и человека или споры у растений.

Значение мейоза состоит в том, что создается гаплоидный набор хромосом и условия для наследственной изменчивости за счет кроссинговера и вероятностного расхождения хромосом № 12 Сперматогенез и овогенез. Цитологическая и цитогенетическая характеристика. Биологическое значение полового размножения.

Сперматогенез - от греч . sperma, род. п. spermatos - семя и ...генез), образование дифференцированных мужских половых клеток - сперматозоидов; у человека и животных - в семенниках, у низших растений - в антеридиях. У большинства высших растений в пыльцевой трубке образуются сперматозоиды, чаще называются спермиями.

Сперматогенез начинается одновременно с деятельностью яичка под влиянием половых гормонов в период полового созревания подростка и далее протекает непрерывно (у большинства мужчин практически до конца жизни), имеет чёткий ритм и равномерную интенсивность. Сперматогонии, содержащие удвоенный набор хромосом, делятся путём митоза, приводя к возникновению последующих клеток - сперматоцитов 1-го порядка. Далее в результате двух последовательных делений (мейотические деления) образуются сперматоциты 2-го порядка, а затем сперматиды (клетки сперматогенеза, непосредственно предшествующие сперматозоиду). При этих делениях происходит уменьшение (редукция) числа хромосом вдвое. Сперматиды не делятся, вступают в заключительный период сперматогенеза (период формирования спермиев) и после длительной фазы дифференцировки превращаются в сперматозоиды. Происходит это путём постепенного вытяжения клетки, изменения, удлинения её формы, в результате чего клеточное ядро сперматида образует головку сперматозоида, а оболочка и цитоплазма - шейку и хвост. В последней фазе развития головки сперматозоидов тесно примыкают к клеткам Сертоли, получая от них питание до полного созревания. После этого сперматозоиды, уже зрелые, попадают в просвет канальца яичка и далее в придаток, где происходит их накопление и выведение из организма во время семяизвержения

Овогенез - процесс развития женских половых клеток гамет, заканчивающийся формированием яйцеклеток. У женщины в течение менструального цикла созревает лишь одна яйцеклетка. Процесс овогенеза имеет принципиальное сходство со сперматогенезом и также проходит через ряд стадий: размножения, роста и созревания. Яйцеклетки образуются в яичнике, развиваясь из незрелых половых клеток — овогониев, содержащих диплоидное число хромосом. Овогонии, подобно сперматогониям, претерпевают последовательные митотические деления, которые завершаются к моменту рождения плода.

Затем наступает период роста овогониев, когда их называют овоцитами I порядка. Они окружены одним слоем клеток — гранулёзной оболочкой — и образуют так называемые примордиальные фолликулы . Плод женского пола накануне рождения содержит около 2 млн. этих фолликулов, но лишь примерно 450 из них достигают стадии овоцитов II порядка и выходят из яичника в процессе овуляции. Созревание овоцита сопровождается двумя последовательными делениями, приводящими к уменьшению числа хромосом в клетке вдвое. В результате первого деления мейоза образуется крупный овоцит II порядка и первое полярное тельце, а после второго деления — зрелая, способная к оплодотворению и дальнейшему развитию яйцеклетка с гаплоидным набором хромосом и второе полярное тельце. Полярные тельца представляют собой мелкие клетки, не играют роли в овогенезе и в конечном счёте разрушаются.  № 13 Оплодотворение. Партеногенез. Формы и распространенность в природе. Половой диморфизм.

Оплодотворение – это процесс слияния сперматозоида с яйцеклеткой с последующим слиянием их ядер и образованием диплоидной зиготы. Биологическое значение этого процесса состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признаки обоих родительских организмов. При образовании гамет в мейозе возникают клетки с разным сочетанием хромосом, поэтому после оплодотворения новые организмы сочетают в себе признаки отца и матери в различных комбинациях. В результате этого значительно увеличивается наследственное разнообразие организмов.

Партеногенез - (от греч . parthenos - девственница и ...генез) (девственное размножение), форма полового размножения, развитие яйцеклетки без оплодотворения. Свойствен многим беспозвоночным животным (дафнии, коловратки, тли, пчелы и др.) и многим семенным и споровым растениям.

Примеры естественного партеногенеза у млекопитающих неизвестны; они изредка встречаются у низших позвоночных и весьма обычны у беспозвоночных, особенно у насекомых. Существует два типа партеногенеза: облигатный (т.е. обязательный) и факультативный. Первый свойствен видам, у которых самцов либо нет совсем, либо они редки и не способны функционировать. К таким видам относятся некоторые тли, палочники, сверчки, бабочки; популяции без самцов изредка встречаются у рыб, например у серебряного карася. При факультативном партеногенезе яйца могут развиваться как партеногенетически, так и в результате оплодотворения, причем партеногенетическое размножение может преобладать в условиях, когда слишком редки контакты разнополых особей, например на границе ареала распространения вида.

Особые формы партеногенеза - гиногенез и андрогенез, а также педогенез.

Половой диморфизм. Оба пола имеют принципиальные различия в гаметогенезе, на завершающих стадиях - у взрослых особей. Биологическое значение полового диморфизма в формировании и развитии половых клеток ранее не рассматривалось видимо потому, что для понимания сущности явления необходим

мультидисциплинарный подход.

Различия процессов формирования яйцеклеток и сперматозоидов заключаются в том, что у мужчин протекает исключительно динамичный и постоянно обновляющийся процесс образования новых клеток, в то время как у женщин происходит периодическая, ежемесячная индукция развития лишь одной клетки из однажды сформированного пула.

Таким образом, мужской организм способен воспринимать влияния окружающей среды, а женский – передавать эти влияния, воспринятые мужским полом, в следующее поколение.

Половой диморфизм гаметогенеза позволяет реализовать так называемые популяционные функции полов № 14 Особенности морфологического и функционального строения хромосом. Гетеро- и эухроматин.

Хромосомы (рис. 4) являются носителями материальных основ наследственности – генов. В основе действия гена в процессе развития организма лежит его способность через посредство РНК определять синтез белков. В молекуле ДНК, входящей в состав хромосом, «записана» информация, определяющая химическую структуру белков.

Хромосомы (греч. хрома – краска и сома – тело; были так названы из-за способности к интенсивному окрашиванию) – это важнейший органоид ядра, образованный ДНК в комплексе с основным белком – гистоном, содержащим большое количество лизина и аргинина; этот комплекс составляет около 90% вещества хромосом. В состав хромосом входят также РНК, кислые белки, липиды, минеральные вещества и фермент ДНК-полимераза, необходимый для репликации (удвоения) ДНК. Хромосомы могут иметь длину, в десятки и сотни раз превышающую диаметр ядра. В интерфазу (период между делениями) хромосомы деспирализованы, видны только в электронный микроскоп и представляют собой длинные тонкие нити хроматина. В этот период идет процесс удвоения (редупликации) хромосом; в конце интерфазы каждая хромосома состоит из двух хроматид. Она имеет первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. Центромера служит местом прикрепления нити веретена деления. У ядрышковых хромосом имеется также вторичная перетяжка, где формируется ядрышко.

Функция хромосом заключается в контроле над всеми процессами жизнедеятельности клетки. Хромосомы являются носителями генетической информации. Наследственная информация передается путем репликации молекулы ДНК. Число, размер и форма хромосом строго специфичны для каждого вида.

В половых клетках и в спорах у растений содержится одинарный (гаплоидный) набор хромосом, в соматических клетках – двойной (диплоидный) набор. Бывают также полиплоидные клетки. Различают гомологичные (парные, соответствующие) и негомологичные хромосомы. Хромосомы, определяющие развитие пола, называют половыми. Хромосомы соматических клеток называют аутосомами.

Гетерохроматин - часть хроматина, находящаяся в конденсированном состоянии в интерфазе клеточного цикла, как правило, реплицируется позже эухроматина и в основном составлен высокоповторяющимися последовательностями ДНК , ДНК в составе Г. чаще всего не транскрибируется; количество и распределение Г. обычно видоспецифично и может быть определено с помощью С-бэндинга и др. методов дифференциального окрашивания хромосом; различают структурный (постоянно неактивный, конститутивный) и факультативный (обратимо конденсированный) Г. ; термин “Г.” предложен Э.Хейтцем в 1922, биологическая роль Г. подробно изучена А.А.Прокофьевой-Бельговской.

Эухроматин - вещество хромосомы, сохраняющее деспирализованное (диффузное) состояние в покоящемся ядре и спирализующееся при делении клеток. Содержит большинство структурных генов организма. № 15 Кариотип и идиограмма хромосом человека. Характеристика кариотипа человека в норме.

Кариотип.

(от карио ... и греч. typos - отпечаток, форма), типичная для вида совокупность морфологических признаков хромосом (размер, форма, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе кариосистематики. Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.

У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование кариотипа проводится с помощью метода, называемого цитогенетика.

Идиограмма (от греч . idios - свой, своеобразный и ...грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами.

Кариограмма (от карио... и... грамма), графическое изображение кариотипа для количественной характеристики каждой хромосомы. Один из типов К. - идиограмма - схематическая зарисовка хромосом, расположенных в ряд по их длине (рис.). Др. тип К. - график, на котором координатами служат какие-либо значения длины хромосомы или её части и всего кариотипа (например, относительная длина хромосом) и так называемый центромерный индекс, т. е. отношение длины короткого плеча к длине всей хромосомы. Расположение каждой точки на К. отражает распределение хромосом в кариотипе. Основная задача кариограммного анализа - выявление гетерогенности (различий) внешне сходных хромосом в той или иной их группе.

 № 16 Кодирование и реализация биологической информации в клетке. Кодовая система ДНК и белка.

Белки – это гетерополимеры, состоящие из 20 различных мономеров – природных альфа-аминокислот. Белки – это нерегулярные полимеры.

В строении молекулы белка различают несколько уровней структурной организации (рис. 11). Первичная структура – это последовательность аминокислотных остатков, соединенных пептидными связями. Вторичная структура – как правило, это спиральная структура (альфа-спираль), которая удерживается множеством водородных связей, возникающих между находящимся близко друг от друга –С=О и –NH-группами. Другой тип вторичной структуры – это бета-слой, или складчатый слой; это две параллельные полипептидные цепи, связанные водородными связями, перпендикулярными цепям. Третичная структура белковой молекулы – это пространственная конфигурация, обычно напоминающая компактную глобулу; она поддерживается ионными, водородными и дисульфидными (S–S) связями, а также гидрофобными взаимодействиями. Четвертичная структура образуется при взаимодействии нескольких субъединиц – глобул (например, молекула гемоглобина состоит из четырех таких субъединиц). Утрата белковой молекулой своей структуры называется денатурацией; она может быть вызвана температурой, обезвоживанием, облучением и т.д. Если при денатурации первичная структура не нарушается, то при восстановлении нормальных условий полностью воссоздается структура белка.

Белки синтезируют все клетки, кроме безъядерных. Структура белка определяется ядерной ДНК. Информация о последовательности аминокислот в одной полипептидной цепи находится в участке ДНК, который называется ген. В ДНК заложена информация о первичной структуре белка. Код ДНК един для всех организмов. Каждой аминокислоте соответствует три нуклеотида, образующих триплет, или кодон. Такое кодирование избыточно: возможны 64 комбинации триплетов, тогда как аминокислот только 20. Существуют также управляющие триплеты, например, обозначающие начало и конец гена.

Синтез одной молекулы белка обычно идет 1–2 мин (один шаг занимает 0,2 с).
Биосинтез белка – это цепь реакций, в которых используется энергия АТФ. Во всех реакциях синтеза белка участвуют ферменты.
Биосинтез белка – это матричный синтез. Матрицей является ДНК в синтезе РНК и ДНК или РНК в синтезе белка.   

Интернет-ресурсы:

http://эссе.рф - сборник не проиндексированных рефератов. Поиск по рубрикам и теме. Большинство текстов бесплатные. Магазин готовых работ.

http://www.maxdiplom.ru - Курсовая работа скачать бесплатно банк рефератов 10 Гигабайт.

1